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Abstract. Electronic Health Record (EHR) data is a rich source for
powerful biomedical discovery but it consists of a wide variety of data
types that are traditionally difficult to model. Furthermore, many ma-
chine learning frameworks that utilize these data for predictive tasks
do not fully leverage the inter-connectivity structure and therefore may
not be fully optimized. In this work, we propose a relational, deep het-
erogeneous network learning method that operates on EHR data and
addresses these limitations. In this model, we used three different node
types: patient, lab, and diagnosis. We show that relational graph learning
naturally encodes structured relationships in the EHR and outperforms
traditional feed forward models in the prediction of thousands of diseases.
We evaluated our model on the EHR data derived from MIMIC-III, a
public critical care data set, and show that our model has improved
prediction of numerous diagnosis.
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1 Introduction

Electrical Health Records (EHRs) have rapidly emerged over the past 10 years
as a powerful source for biomedical resource [11]. EHRs consist of clinical data
from patient encounters with healthcare systems, which include demographic
information, diagnoses, laboratory tests, medications, and clinical notes. EHR
data have been used to develop machine learning (ML), and deep learning (DL),
models for predicting diagnoses, mortality, length of hospital stay, and future
illnesses. However, many of these ML-related solutions to clinical tasks consist
of simple rule based models that, while possibly are easier to implement, often
do not capture the complex patterns of the data. Some of these solutions are
sufficient for certain clinical tasks, but for other tasks they are lacking. For
example, one factor for determining priority for transplantation is a model for
end-stage liver disease which includes only four variables and was trained on only
231 patients [3]. While there are a number of barriers that need to be overcome
for DL to pervade healthcare operations, one particular hurdle is developing
more suitable EHR representations for modeling.

Current EHR systems are constructed with numerous medical codes of differ-
ent types to represent diverse data elements captured in clinical encounters. The
performance of DL models on EHR could benefit from accurately capturing and
modeling these heterogeneous data [2,10]. The most common approach to handle
disparate data types is to treat each patient encounter as an unordered set of fea-
tures, and concatenate these features together as the input to a DL system [10].
Such an approach is straightforward, intuitive, and easy to manipulate. However,
this feature integration approach disregards the graphical structure and inner
connectivity between medical concepts, such as physician’s decision process [4].
More importantly, the lack of encoding patient to patient similarity makes this
approach lose many information that pairwise patients could provide in vari-
ous aspects, such as cohort analysis, disease sub-typing, diagnoses comparison,
and treatment comparison [12]. Some recent graphical techniques emerges on
modeling the connectivity nature, such as the graph model that captures the
physician’s treatment procedure [3, 4], and a temporary graph model [7] that
captures the medical concepts inner connectivity patterns. But these techniques
performs per-patient training, lack of considering the information provided from
similar patient.

Furthermore, DL modeling is difficult because of issues of data quality [6]
due to insufficient patient information and missing values among others. Besides
that, data diversity and non-uniform length of time series within each patient
also create issues for modeling. For example, patient encounter frequency varies
in length, ranging from only one encounter to multiple readmissions. Also, length
of stay could vary from a few hours to several months. The data sparsity along
with data diversity create difficulties for deep learning models such as LSTM
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system [2, 6], which requires abundant training data in order to reach good
performance.

In this paper, we propose a Heterogeneous Graph learning Model (HGM)
and apply it to EHR data. It contains various techniques and properties that at-
tempts to overcome the aforementioned problems. Since it is a graph structure,
this model could more naturally capture the inter connectivity between medical
concepts. It also connects similar patients by their disease profiles, so that in-
formation from a similar patient could be leveraged for encoding in the target
patient representation. The graph model learns representations by propagating
information through the whole network, so when the data set is sparse, the em-
bedding representation for each patient could be learned from the information
traversing the whole network. This model, learning using Skip Gram With Neg-
ative Sampling strategy [9], is an efficient way of using all complex information
available at hand. We show that with the relational heterogeneous graph learn-
ing, we can reach marginal improvement on diagnoses classification accuracy
given patients’ lab tests against traditional per-patient training strategy using
shallow multilayer perceptron neural network.

2 Methodology

In this section, we introduce the theoretical construction of our heterogeneous
EHR graph model. Please refer to the Supplementary Materials (https://github.
com/Tingyiwanyan/mfgen/tree/master/src/supp) for an in depth description of
the preliminaries for these models.

2.1 Data set

For this work, we utilized EHR data from the critical care MIMIC-III de-
identified data set. This data set is comprised of various elements relating to
patients during their hospital care, such as demographics, lab test results, dis-
ease diagnoses, among others. We sampled the first 3801 patients in the dataset
and collected all of their associated lab tests and diagnoses. These patients had
received 447 unique lab tests and 2922 unique diagnoses. The limitation on the
cohort sample size was due to the RAM required to load all of these data as a
graph into memory.

2.2 Data Representation for Graphical Model

We create a graphical model of the EHR data by representing patients, labs, and
diagnoses as nodes in a directed graph. Nodes are connected by edges, which
come in two flavors and can be represented with the triples:

Lab X", patient - {Lab, testing, Patient}

diagnosed

Patient ———— Diagnosis : { Patient, diagnosed, Diagnosis}


https://github.com/Tingyiwanyan/mfgcn/tree/master/src/supp
https://github.com/Tingyiwanyan/mfgcn/tree/master/src/supp
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Fig. 1. Model schematics for representing EHR data in a heterogenous graphical model
(A) and dense vectors (B). All graph nodes in (A) have a corresponding vector like
those shown in (B). The vector representations can be projected into a shared space
with the TransE method, and this projection optimized for retaining relations in the
original data in the embedding via skip-gram optimization.

The initial Patient node representation is a vector X, € R*"" containing the
measured values from lab tests. We initially represented labs and diagnoses as
one-hot encodings: X; € {0,1}47" and X, € {0,1}%992,

With these two types of relationships T, we can construct the heterogeneous
graph integrating the specified elements of the entire EHR data (Figure 1A). One
Patient node could have connection with multiple Diagnoses node, and these
Diagnoses nodes could link to other patients who have the same ICD code.

2.3 Embedding the HGM into a Latent Space

Nodes from a HGN can be embedded into a shared latent space using the TransE
method (Figure 1B) [1]. This method uses a set of 1) projection matrices and
2) relation vectors. After initialization, projections and translations can be op-
timized end-to-end (see section 2.4).

HGM nodes X,,, X;, X4 are projected into a shared latent space with with
trainable projection matrices W,, W;, Wy using these nonlinear mappings:

cp = (W - Xp)
C; = U(Wi Xz)
Cq = O’(Wd Xd)

Where o is a non-linear activation function and ¢,, ¢;, cq are the latent represen-
tations of each type of node. Despite the EHR-space using different dimensions
for different node types X,,, X;, Xg4, all nodes types are projected into the same
latent space.

Then we apply translation operations to link these different types of nodes:

Cp =Ci +Tip

Cqd = Cp+ Tpd
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Where 7, and r,q are the relation vectors connecting patients to labs and
diseases, respectively.

2.4 Optimizing the HGM Embedding

With the projection and translation operations we can convert different types of
nodes into the same latent space. We then tune these parameterized transforms
to increase the proximity between those embedding points whose corresponding
graph nodes are often connected. Specifically, we apply Heterogeneous Skip-gram
optimization using the optimization model [5]:

max Z Z logPr(Ni(u)|f(u)) (1)

ueV teTy

Where Ni(u) is the heterogeneous neighborhood vertices of center node u, and
t € Ty is the node type. Here, we learn effective node embeddings by maximizing
the probability of correctly predicting the a patient node’s associated labs and
diagnoses. The prediction probability is modeled as a softmax function:

Ci-

Priedf(u) =~ (2)

Where 4 is the latent representation of patient u, ¢; is the latent representa-
tion of lab and diagnosis neighbors of node of u, and ¢, - @ is the inner product of
the two embedding vectors representing their similarity. Z,, is the normalization
term Z, = Y v e% % Where Z, integrate over all vertices. Therefore, equation
1 could be simplified to:

== ¥ d i-logz] (3)

teT ueV ¢y €Ny(u)

Numerical computation of Z, is intractable for very huge graph with mil-
lions of nodes. So we adopt negative sampling strategy [9] to approximate the
normalization factor, and the optimization function becomes:

K
Lo==-33 3 togol@ @)+ Y Eepreplogo(—G-@)] ()

teT ueV ¢ €Ny (u) j=1

where o(z) = m, K is the number of negative samples. P,(c;) is the
negative sampling distribution. Equation 4 is the final objective function we are
using for heterogeneous graph learning.

For training our Heterogeneous Graph Model (HGM), we perform hetero-
geneous neighborhood sampling by its one-hop connectivity, and pick Patient
node as the center node, since it has one-hop connections to both Diagnoses and
Item_test nodes. Specifically, for one training center Patient node, we uniformly
sample 10 Diagnoses one-hop direct connected nodes, and 10 Item_test one-hop

direct connected nodes. From these sampled 10 Diagnoses nodes, we sample
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another 10 Patient nodes, each has connection with each of the 10 Diagnoses
nodes. In this way, we connect the center patient node with its similar other
Patient nodes by their common diagnoses. For negative sampling [9], we per-
form uniform sampling through all Diagnoses node and Item_test nodes that
don’t have one-hop connections with the center training patient node. Then we
project these different nodes into same latent space through TransE model, after
unifying the embeddings for different node types, each concept is representetd as
a point in a Euclidean space. In this space we can measure the similarity between
any two points by the angle between vectors between them and the origin.

2.5 Disease Prediction

For diagnosis prediction, we used the HGM embedding vectors to identify similar
patients and diagnoses, and evaluate how this approach compares to a classical
feed forward Neural Network approach. We record F1 score and AUC score as
the evaluation metric for comparison.

We split patients into a group of 2,660 used to fit the MLP and HGM em-
bedding and 1,141 used to evaluate disease prediction. For each patient, we
computed the distance between a patient plus the diagnosis translation vector
rpq to all diseases.

The baseline MLP model is a feed-forward encoding-decoding neural network
structure with a single hidden embedding layer whose dimensionality matches
the embeddings produced by the HGM. The decoding part is a softmax layer
for classifying correct diagnoses, so the MLP is trained in a supervised fashion.

3 Results

3.1 Embedded Representation

By learning a heterogenous graph embedding for each node type and then using
transE to translate between type-specific embeddings, we generate dense vector
representation in a space shared between all node types (Figure 3). There’s a
mixed cluster of all node types and several type-selective clusters.

Upon inspection, salient clusters of labs tests can be identified when the
embeddings are projected into 2D TSNE space for visualization. The members
of one cluster corresponded to routine comprehensive metabolic panels, while
members of another cluster largely consisted of ventilator measurements.

3.2 Diagnosis Prediction Performance Comparison

The HGM outperformed the MLP on many diagnoses. When evaluating both
models’ diagnosis predictions across all common diagnnoses, the HGM has a
higher performance than an MLP across all tested latent embedding dimension-
alities (Table 1, Figure 2). Notably, the performance of HGM remained con-
sistent with larger embeddings, while the performance of MLP degraded with
larger embeddings.
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Table 1. Diagnosis Classification Performance

Model F1 score AUC score

100 hidden latent embedding dimension

MLP-Sigmoid 0.671 0.788
MLP-Tanh 0.517 0.778
MLP-Relu 0.483 0.765
HGM-Sigmoid 0.739 0.834
HGM-Tanh 0.727 0.829
HGM-Relu 0.713 0.839
200 hidden latent embedding dimension
MLP-Sigmoid 0.625 0.766
MLP-Tanh 0.447 0.755
MLP-Relu 0.446 0.746
HGM-Sigmoid 0.741 0.835
HGM-Tanh 0.733 0.828
HGM-Relu 0.739 0.840
500 hidden latent embedding dimension
MLP-Sigmoid 0.537 0.753
MLP-Tanh 0.377 0.724
MLP-Relu 0.419 0.734
HGM-Sigmoid 0.751 0.834
HGM-Tanh 0.735 0.829
HGM-Relu 0.743 0.842

The predictive performance of these models varied widely by disease, as
shown in (Figure 3B). The performance of HGM was particularly strong with
diseases that were more prevalent in the test set (see Table 2). We observed only
one diagnosis, end stage renal diseases (ESRD), where MLP outperformed HGM
(MLP F1: 0.606, HGM F1: 0.245) (Figure 3A).

For the diagnoses with at least 1 percent in prevalence, The median, 25th per-
centile, and 75th percentile of MLP predictive F1 scores are 0, 0, 0, respectively.
The range of MLP F1 distribution is 0 to 0.606. For the same set of diagnoses,
the median, 25th percentile, and 75th percentile of HGM F1 scores are 0.041,
0.024, 0.081, respectively, and the range of HGM F1 distribution is 0 to 0.562.

4 Discussion

In this work, we present HGM embeddings as a way to naturally represent EHR
data relations with dense vectors and an embedding space containing all the node
types in the original graph. By measuring distances between patient and disease
concepts in this embedding space, we were able to predict which diagnoses a
group of hold-out patients had with better performance than a supervised model
trained specifically to predict patients’ diagnoses from their labs.
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Table 2. Prediction Performance on Most Observed Diagnoses

Diagnoses HGM-sigmoid MLP-sigmoid
F1 score F1 score
Congestive heart failure 0.562 0.406
Unspecified essential hypertension 0.512 0.435
Atrial fibrillation 0.447 0.423
Acute kidney failure 0.455 0.415
Coronary atherosclerosis 0.365 0.163
Other and unspecified hyperlipidemia 0.367 0.297
Acute respiratory failure 0.316 0.067
Esophageal reflux 0.311 0.041
Diabetes mellitus 0.297 0.192
Urinary tract infection 0.276 0.060
1.0
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Fig. 2. Binary classification performance of HGM and MLP across common diseases.
Each line represents the tradeoff of sensitivity and specificity for a classifier. HGM
frameworks with larger embedding spaces perform better than the MLP models.

Averaged across all diseases, the HGM consistently outperformed the MLP
across a range of activation functions and embedding dimension sizes. HGM and
MLP had different trends as the dimensionality of the embedding increased. A
larger embedding provides more complex representations, but is more likely to be
overfit to training data. As the dimensionality of the embedding was increased,
the MLP AUC decreased with a dosage effect observed across all activation
functions. However, the HGM maintained a stable performance across all em-
bedding capacities. This suggests that the embeddings learned by HGM are less
susceptible to overfit training data.

MLP outperformed HGM on only one diagnosis, End Stage Renal Diseases
(ESRD). This may be because the diagnosis of ESRD can be determined solely
by a single lab test, estimated Glomerular Filtration Rate (eGFR). Thus, it is
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Fig.3. A) R? view of the R%%° embedding space shared by all data types. Each point
represents a graph node, and that node’s type is indicated with color. The dimension-
ality of the space is reduced for visual interpretation with tSNE. B) Distribution of F1
scores for common diagnoses using a HGM or MLP model. Diagnoses with at least 1%
prevalence in the test set were included.

less likely that the prediction of ESRD will benefit from the graphical property
of HGM.

One key feature of HGM is that the graphical structure of HGM explicitly
declares and takes the sum of information from all patient nodes connecting a
given pair of diagnosis and lab test. On the contrary, MLP flattens all features at
the patient-level, and performs training on the per-patient basis, allowing only
indirect connections between pairs of diagnoses and lab tests and relying only
on network parameters to learn the underlying biomedical relationships.

The data set we used to fit HGMs allowed us to develop an EHR-knowledge
graph across the compendium of care provided in Intensive care units. We found
that our model was robust to overfitting but there may be bias in lab-disease
relationships between patient populations or intensive care practices. Only the
sickest patients are admitted to the ICU, so this model should be fine-tuned for
other inpatient applications. Another consequence of only having ICU visits is
that most people have only 1 or few ICU admissions, which is not suitable for
time series models. Other studies applying graph theory to EHRs have been able
to perform robust sequential diseases prediction that consistently outperforms
non-graph models [3].

5 Conclusion

In this study, we apply a deep heterogeneous graph model(HGM) to learn the
representation of EHR data. In the task of diagnosis prediction, HGM embed-
dings consistently outperformed non-graphical baseline models across diagnoses
and appears less susceptible to overfitting of training data. Our findings sug-
gest that HGM is a promising strategy to develop generalizable EHR-knowledge
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graph. In the future, we expect to apply HGM to other clinically relevant tasks
and assess performance across multi-insitutional datasets.
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