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Abstract. Triple Space Computing (TSC) is a very simple and powerful 
paradigm that inherits the communication model from Tuple Space Computing 
model and projects it in the context of the Semantic Web. In this paper, we 
propose Triple Space Computing as a new communication and coordination 
framework for Semantic Web and Semantic Web Services. We have conducted 
wide-covered state of the art studies in related fields and identify the current 
status and the value added by TSC. Based on this, we propose the overall 
architecture of TSC and the interactions among different components.  

1   Introduction 

Triple Space Computing [1] is a powerful paradigm that inherits the communication 
model from Tuple Space Computing and projects it in the context of the Semantic 
Web. Instead of sending messages forward and backward among participants, like 
most of today’s web service-based applications do, triple-based applications just use a 
simple communication based on reading and writing RDF triples in a shared 
persistent and semantically described information space. Triple Space Computing as a 
new paradigm for coordination and communication compliant with the design 
principles of the Web, thus provides a major building block for the Semantic Web 
and for interoperation of Semantic Web Services. 
    The current communication paradigm of Web Services is message-oriented. SOAP 
as a communication technology for XML implies messaging, WSDL defines mes-
sages that a Web Services exchanges with its user, and literally all ongoing research 
efforts around Semantic Web Services rely on these technologies. Although most 
message-based technologies have reached a level of maturity, there are still some 
open issues. For instance, messaging technologies might not be scalable. Triple Space 



Computing (TSC) aims to overcome the deficiencies of message-based communica-
tion technologies by adding semantics to Tuple space computing. TSC is based on the 
evolution and integration of several well-known technologies: Tuple Space Comput-
ing [2], Shared Object Space, Semantic Web and in particular RDF Schema. How-
ever, [3] reports some shortcomings of the current tuple space models. They lack any 
means of name spaces, semantics, unique identifiers and structure in describing the 
information content of the tuples. This tuple space provides a flat and simple data 
model that does not provide nesting. TSC takes the communication model of Tuple 
Space Computing, wherein communication partners write the information to be inter-
changed into a common space and thus do not have to send messages between each 
other, TSC enhances this with the semantics required for Semantic Web enabled 
technologies.  
    The basis for prototype development is based on Corso (Coordinated Shared 
Objects) system [4]. Corso is a platform for the coordination of distributed 
applications in heterogeneous IT environments that realizes a data space for shared 
objects. Corso offers maximum scalability and flexibility by allowing applications to 
communicate with one another via common distributed persistent „spaces of objects“. 
For testing and validating the TSC technology with special attention to the support for 
Semantic Web Services, we will integrate this system in the Semantic Web Service 
Environment WSMX1, which is the reference implementation of the Web Service 
Modeling Ontology WSMO2. Thereby, the TSC technology will be aligned with 
emerging technologies for Semantic Web Services. By providing the basis for a new 
communication technology for the Semantic Web, TSC will provide a significant 
contribution to international research and development efforts around the Semantic 
Web and Semantic Web Services.  
   In this paper, we report some of the progresses. First, we provide the summarized 
current state of the arts of Space-based Computing. Based on this, we present the 
overall architecture of TSC which is mainly focusing on introduction of different 
components involved in a Triple Space environment and the connections and 
interaction among these components. Finally we mention some potential future 
works. 

2   State of the art of Space-based Computing 

Although the space-based computing paradigm is a relatively new concept, a 
considerable amount of technology has already been created to support such 
paradigm. In the following we briefly present the state of the art in this field. 
    Linda was developed by David Gelernter in the mid-80s at Yale University. Ini-
tially presented as a partial language design [2], it was then recognized as a novel 
communication model on its own and is now referred to as a coordination language 
for parallel and distributed programming [5]. Coordination provides the infrastructure 
for establishing communication and synchronization between activities and for 
spawning new activities. There are many instantiations or implementations of the 
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Linda model, embedding Linda in a concrete host language. Examples include C-
Linda, Fortran-Linda and Shared-Prolog. Linda allows defining executions of activi-
ties or processes orthogonal to the computation language, i.e. Linda does not care 
about, how processes do the computation, but only how these processes are created. 
The Linda model is a memory model. The Linda memory is called tuple space and 
consists of logical tuples. There are two kinds of tuples. Data tuples are passive and 
contain static data. Process tuples or "live tuples" are active and represent processes 
under execution. Processes exchange data by writing and reading data tuples to and 
from the tuple space.  
    Multiple extensions of Linda have been proposed, most of which introduce new 
operations. Multiple tuple spaces have been proposed to improve modularity in 
Linda [6]. Collect [7] and copycollect [8] have been proposed to solve the multiple rd 
and related problems. Notifications (notify) have been introduced by JavaSpaces3 to 
embed reactive programming into the shared data space. Transactions are proposed 
by PLinda [9] to unify two different kinds of parallelism. Asynchronous process-to-
space communication is proposed in Bonita [10] to improve performance compared 
to prior Linda implementations. 
    JavaSpaces technology from Sun Microsystems provides a platform for simple 
development of distributed, Java based systems. It is designed to help the programmer 
to solve two related problems: distributed persistency and the design of distributed 
algorithms. Using JavaSpaces, distributed processes can communicate, share objects 
and coordinate their activities by reading and writing tuples (called entries) from and 
to persistent spaces. JavaSpaces are based on Jini4, an open software architecture that 
enables the creation of network-centric solutions which are highly adaptive to change. 
JavaSpaces make use of some Jini technologies such as entries, transactions, leases 
and events. 

TSpaces5, developed at the IBM Almaden Research Centre, is "a network commu-
nication buffer with database capabilities which enables communication between 
applications and devices in a network of heterogeneous computers and operating 
systems". It is a tuple space implementation in Java, which supports, besides the basic 
Linda like tuple space operations for reading and writing tuples, database services, 
URL-based file transfer services, access control and event notification services. Since 
TSpaces is implemented in Java, it automatically possesses network ubiquity through 
platform independence. The small memory foot print makes TSpaces attractive for 
small, embedded systems and ubiquitous computing. 

GigaSpaces6 offer a family of products around the flagship "GigaSpaces Enterprise 
Application Grid". All of them are based on a space-based, distributed shared mem-
ory core. The main concept of this core is a space, which can be accessed via the 
JavaSpaces interface. Additionally there are some extensions to the JavaSpace API, 
alternative non-JavaSpace APIs and clustering features supporting replication, 
failover and load balancing. GigaSpaces provide a persistent JavaSpaces implementa-
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tion with some extensions, most of which fall into the categories batch processing 
(e.g. write multiple entries at once), inplaces updates (updates in the space without 
having to take and re-insert an entry to the space) and administration activities (e.g. 
starting and stopping spaces). 

The difference to tuple spaces is that Corso do not work the tuples but with data 
objects. Efficient and physically distributed data structures can be built up in the 
Corso space using unique object references (OIDs). Objects that are written into the 
space can be arbitrarily structured (e.g. records, arrays, tuples, etc.) and sophisticated 
replications techniques keep the space consistent. The Corso system also provides 
notification facilities. It is able to notify to the corresponding users of an object that a 
resource is available. Acting as a virtual shared memory, Corso is used for 
communication between and synchronization of parallel and distributed processes. 
Corso is not only a pure memory model. It also supports complex coordination 
patterns on the shared objects through an advanced transaction and process model. 
Transactions and processes define the recoverability of the shared data objects and of 
the computations on them. The Corso middleware hides the heterogeneity and puts a 
strong focus on security. The virtual space can be divided into secure subspaces 
connecting trusted partners. It provides secure distributed data spaces as well as 
individual security and privacy policies by using flexible plug-in mechanisms like 
login authentication, access authorization, and communication encryption. Corso has 
already been successfully applied in several industry projects. 

As a relevant part of the Service Oriented Architecture (SOA), notification is 
expected to play an essential role in the development of asynchronous, loosely-
coupled and dynamic systems, where entities receive messages based on their 
registered interest in certain occurrences or situations. TSC project will provide 
extensions for tuple space coordination model to support publish-subscription 
capabilities.  The publish-subscribe paradigm is an asynchronous, many-to-many 
communication for distributed systems [26]. The model defines two main roles for 
participants: source, which generates notifications; and sink, which expresses its 
interest in concrete event notifications or pattern of event notifications. Typically a 
source can act as a producer and as a publisher. Producers encode information into 
notification messages, while publishers make accessible these notifications. 
Similarly, a sink can act as a subscriber and as a consumer. Consumers express 
interest in concrete notifications and consume those notifications when corresponding 
information is published by a source. Subscribers are responsible for registering the 
consumer’ interests. 

In the case of a loosely-coupled configuration (independent producers, publishers, 
subscribers and consumers), the publish-subscribe model de-couples the processes 
involved in information exchange in four orthogonal dimensions (partially adapted 
from [26]): 

• Space decoupling: Producers and consumers can run in completely different 
computational environments as long as both can make access to the same 
event service, i.e., space-wise the processes are completely de-coupled  

• Reference decoupling: the processes that interact through an event service 
do not need to know each other (anonymous). The notifications published by 
publishers are accessed by consumers indirectly. In general, notifications do 



not include references to concrete consumers, and similarly consumers do 
usually not include specific references to producers.  

• Time decoupling: the processes that interact through an event service do not 
need to be up at the same time (asynchronous). In particular, producers 
might generate some notifications while related consumers are not connected 
with the event service, and the other way around, consumers might get 
notifications while the original producers are not online.  

• Flow decoupling: participants are not block while producing/receiving 
notifications. Consumers can receive a notification while performing some 
concurrent activity (i.e. through a 'callback'). Producers can produce 
notifications and continuous with their execution flow. In other words, main 
flows of producers and consumers are not affected for the generation or 
reception of notifications.  

 
There is a long tradition in the use of these kinds of technologies in the areas of 

distributed objects, message oriented middleware (MOM) and Peer to Peer systems. 
Recently, two new specifications, WS-Notification [11] and WS-Eventing [12] 
bring the publish-subscribe communication paradigm once again into the fore. The 
publish-subscribe paradigm is an asynchronous, many-to-many communication 
paradigm for distributed systems [13]. A fundamental problem of most 
publish/subscribe systems, is how to match the interests of consumers with the 
available notifications generated by producers. Simple strings such as 
"Weather/Warnings" or complex XPath or SQL queries do not provide enough 
expressivity to perform a sophisticated matching of interests and data. However, in 
[14], a proposal for a Semantic Message Oriented Middleware based on DAML+OIL 
is presented to overcome this limitation. Some concrete implementation based on 
publish-subscribe paradigm are Gryphon [15], TIB/RV [16], Scribe [17], SIENA 
[18],   Hermes [19] and so on. The relation of the TSC, Web and Tuple Space 
paradigms is shown in Fig. 1.  

3   TSC Architecture 

Semantically enabled tuplespaces can offer an infrastructure that scales conceptually 
on an Internet level. Just as Web servers publish Web pages for humans to read, 
tuplespace servers would provide tuplespaces for the publication of machine-
interpretable data. Providers and consumers could publish and consume tuples over a 
globally accessible infrastructure, i.e., the Internet. Various tuplespace servers could 
be located at different machines all over the globe and hence every partner in a 
communication process can target its preferred space, as is the case with Web and 
FTP servers. This highlights many advantages for providers and consumers. The 
providers of data can publish it at any point in time (time autonomy), independent of 
its internal storage (location autonomy), independently of the knowledge about 
potential readers (reference autonomy), and independent of its internal data schema 
(schema autonomy) [20].  



 

 
Fig. 1. TSC and related paradigms  

    

3.1 Overall architecture 

Like the Web, TSC aims to build a Triple Space Computing infrastructure based on 
the abstract model called REST (Representational State Transfer) [21]. The 
fundamental principle of REST is that resources are stateless and identified by URIs. 
HTTP is the protocol used to access to the resources and provides a minimal set of 
operations enough to model any application domain [21]. Those operations (GET, 
DELETE, POST and PUT) are quite similar to Tuple-Space operations (READ, 
TAKE and WRITE in TSpaces). Tuples can be identified by URIs and/or can be 
modeled using RDF triples. Since every representation transfer must be initiated by 
the client, and every response must be generated as soon as possible (the statelessness 
requirement) there is no way for a server to transmit any information to a client 
asynchronously in REST. Furthermore, there is no direct way to model a peer-to-peer 
relationship [22]. Several extensions of REST, like ARRESTED [22], have been 
proposed to provide a proper support of decentralized and distributed asynchronous 
event-based Web systems.  

The limitations of REST to model asynchronous interaction motivated us to pay at-
tention to Peer-to-Peer systems, and in particular super-peer configuration. P2P are 
decentralized, distributed, self-organized and capable of adapting to changes such as 
failure [19]. Although there are several open issues regarding scalability, shared re-



sources management, security and trust, current efforts in the field (for instance [23]) 
are progressively overcoming these problems. Hybrid architectures that combine pure 
P2P and client/server systems are called super-peer systems [24]. This configuration 
drives into two-tiered system. The upper-tier is composed of well-connected and 
powerful servers, and the lower-tier, in contrast, consists in clients with limited com-
putational resources that are temporarily available. Three kinds of nodes are identi-
fied in Triple Space architecture:  

• Servers store primary and secondary replicas of the data published; support 
versioning services; provide an access point for light clients to the peer 
network; maintain and execute searching services for evaluating complex 
queries; implement subscription mechanisms related with the contents 
stored; provide security and trust services; balance workload and monitor 
requests from other nodes and subscriptions and advertisements from 
publishers and consumers.  

• Heavy-clients are peers that are not always connected to the system. They 
provide most of the infrastructure of a server (storage and searching 
capabilities) and support users and applications to work off-line with their 
own replica of part of the Triple Space. Replication mechanisms are in 
charge to keep replicas in clients and servers up-to date.  

• Light-clients only include the presentation infrastructure to write query-edit 
operations and visualize data stored on Triple Spaces.  

    Servers and heavy-clients are in charge of running Triple Space kernels (TS 
kernels). A TS kernel provides interfaces for participant to access Triple Spaces and 
implements storing of named graphs [27], synchronization of participants via 
transactions and access control to Triple Spaces. A Triple Space can be spanned by 
one or multiple TS kernels. If multiple TS kernels are involved, the kernel exchanges 
named graphs of the space in a consistent way. Participants are users and applications 
which use the Triple Space in order to publish and access information and to 
communicate with other participants via the Triple Space. Applications can be run in 
servers, heavy clients, and light clients. Since light clients are running in small 
devices like mobile phone, only small applications are expected to be run in those 
devices.  

3.2 Triple Space Data Model and Operations Summary 

A Triple Space contains data in form of RDF triples. Non-overlapping sets of triples 
are grouped into named graphs. Processes (participants) read, write and take named 
graphs to and from the Triple Space in the same way as tuples are read, written and 
taken in Tuple Spaces. The essential difference is that named graphs can be related to 
each other via the contained RDF triples. For example the object of a triple in one 
named graph can be the subject of a triple in another named graph. This way named 
graphs are not self-contained (as tuples in Tuple Spaces), but can build arbitrary RDF 



graphs to represent information. To make use of such nested triples, the TSC interac-
tion model allows, in addition to the already mentioned operations, a query operation. 
This operation allows creating new RDF graphs out of the named graphs in a given 
space.  

Named graphs can be used for several purposes in a Triple Space. One use is to 
publish semantic information to the Triple Space like information is published in the 
(semantic) Web. Named graphs can constitute ontologies (RDF vocabularies) in the 
Triple Space, e.g. a product catalog containing product descriptions and prices. 
Another use of named graphs is to let processes communicate and synchronize each 
other. For example processes can write named graphs representing orders to the 
space, which are picked up by processes which process the orders. Since named 
graphs can be inter-linked via RDF, orders can be related to ontologies, for example 
to a product catalog, published in the space, and thus be semantically enriched.  

The operations available in TSC support both scenarios. Read operations based on 
templates can be used to discover and navigate through the information contained in 
the Triple Space. Mediation [20] based on RDF Schema allows to overcome 
heterogeneity of data. Transactions enable processes to be coordinated consistently. 
The overall, global Triple Space is partitioned into Virtual Triple Spaces, which are 
identified by a Triple Space URI. All Triple Space operations are performed against a 
certain Virtual Triple Space by specifying its URI. To publish information, the 
following operation is used:  

write(URI ts, Graph graph): URI 

   As a result a named graph is inserted to the Triple Space ts, consisting of a 
generated name, which is a URI, and the given graph. The generated name is 
returned. Information contained in a Triple Space can be retrieved by templates, e.g. 
via the following operation:  

read(URI ts, Template template): NamedGraph 
It returns one named graph existing in the Triple Space, which matches template 

[20]. Further retrieval operations allow query data stemming from multiple named 
graphs (query), to block until intended data becomes available (waitToRead, 
waitToQuery) or to remove the retrieved data from the space (take). Concurrent 
access to a Virtual Triple Space by multiple participants needs to be managed in order 
to preserve the intended semantics of interactions [9]. Participants can agree on 
common rules which guarantee consistency. For example certain kinds of information 
may be known as being immutable. Other kinds of information may be agreed to be 
locked if some conditions hold. This kind of interaction between participants is 
referred as cooperative parallelism. Interacting participants must know and agree on 
certain rules.  

Another way to handle consistent concurrent interactions is transactions. 
Transactions allow participants to concurrently access the Triple Spaces without 
having to agree on explicit rules. This kind of parallelism is called competitive 
parallelism and is well known, e.g. from databases. TSC supports transactions and 
provides operations to create, commit and abort transactions. A transaction identifier 
is used to bind a TSC operation to a certain transaction. A typical sequence of 
operations of a participant could be:  



1  transactionID = createTransaction 
2  namedGraph1 = read(tripleSpaceURI, transactionID, namedGraphURI) 
3  namedGraph2 = take(tripleSpaceURI, transactionID, tempalte) 
4  graph3 = //process graphs 
5  nameURI = write(tripleSpaceURI, transactionID, graph3) 
6  commitTransaction(transactionID) 

    The sequence of operations above creates a transaction (1), reads a named graph 
identified by namedGraphURI (2), consumes another named graph retrieved by 
template (3), processes the received graphs and calculates a new graph graph3 (4) 
and writes the new graph (5). Finally the transaction is committed (6). By enclosing 
the read, take and write operations with a transaction, it is guaranteed, that either all 
the take and write operations are applied to space identified by tripeSpaceURI, or the 
operations do not have an effect at all. Further it is guaranteed that the graph observed 
in (2) still exists and has not been modified by a concurrent operation of another 
participant.  

3.3 Triple Space Kernel Overview 

The TS kernel is a software component which can be used to implement both 
Triple Space servers and heavy clients. In the former case it also provides a proxy 
component, which allows light clients to remotely access the server. The TS kernel 
itself consists of the multiple components shown in Fig. 2.  

TS operations and security layer accepts Triple Space operations issued by par-
ticipants via the TSC API. Heavy clients run in the same address space as the TS 
kernel, and the TS kernel is accessed by its native interface. Light clients use TS 
proxies to access the TS kernel of a server node transparently over the network. As a 
variation a light client can access a TS kernel via a standardized protocol, e.g. HTTP. 
In this case a server side component, e.g. a servlet, translates the protocol to the na-
tive TS kernel interface. The execution of a TS operation includes verification of 
security constraints, maintaining state of blocking operations and invocation of the 
underlying coordination layer. The security management API is used to define and 
change security configurations such as access control for spaces or named graphs. 
The coordination layer implements transaction management, i.e. the creation, com-
mit and abort of a transaction and guarantees that concurrent operations are processed 
consistently. It accesses the local Data Access Layer to retrieve data from a space and 
to apply permanent changes to a space [28]. Furthermore, if a Space is spanned by 
multiple TS kernels, the Coordination Layer is responsible for inter-kernel communi-
cation to distribute and collect data and to assure that all involved kernels have a 
consistent view to a space. The mediation engine resolves heterogeneity issues by 
providing mappings for possibly occurring mismatches among different RDF triples. 
It is due to the possibility that different participants may have different RDF schemas 
while communicating via triple space. Mapping rules for mediation are provided to 
the mediation engine at design time and are processed during run time in order to 



resolve heterogeneities by identifying mappings. The mediation management API 
provides methods to turn on/off the usage of mediation engine, to add, remove and 
replace mediation rules. The coordination layer is based on the middleware Corso, 
which is used to replicate named graphs to all involved TS kernels and guarantees 
consistency via built-in transactions. YARS [25] is used to realize the data access 
layer. Distributed kernels can be used to realize architectures containing all kinds of 
nodes. A Triple Space can also be realized by a single TS kernel, which is accessed 
by remote participants in Client/Server style. For non-distributed TS kernels the task 
of the coordination layer boils down to transaction management, which can efficiently 
be done by a traditional RDF database. Compared to a distributed implementation a 
centralized implementation however does not scale as well with the number of par-
ticipants and geographical distribution of participants.  
 

 
Fig. 2. The TS Kernel  

3.4 Coordination Layer 

Since the coordination layer is the core part of the architecture, we illustrate it in more 
details. Basically the coordination layer has three responsibilities, as shown in Fig. 3. 
Firstly, local TS operations, such as reading and writing named graphs (Fig. 3, 1a), 
are executed by accessing the local data access layer (Fig. 3, 1b) and by propagating 



changes to other involved TS kernels (Fig. 3, 1c). Other local operations include 
transaction and Triple Space management. Secondly, changes of a space originating 
from other TS kernels are recognized (Fig. 3, 2a) and applied to the local data access 
layer (Fig. 3, 2b). Thirdly, remote TS kernels involved to span a certain space are 
discovered automatically in the network (Fig. 3, 3).  

 
Fig.3. Interactions of the Coordination Layer  

Triple Space management includes creating new as well as finding, joining and 
leaving existing Triple Spaces. To create a Triple Space, the access layer is used in 
order to initialize the new space and create necessary meta-data [20]. To find a space 
for a given URI other TS kernels may need to be contacted. By joining an existing 
space the TS kernel will be notified by all other involved TS kernel whenever the 
space changes. A TS kernel automatically joins a space as soon as that space is 
accessed via the kernel by any TS operation. Leaving a space stops a TS kernel from 
being notified about changes. Further, replicated data of the space may be deleted at 
the leaving TS kernel.  

Consistent concurrent access to named graphs is provided via transactions [20]. In 
principle both optimistic and pessimistic transactions are applicable for TSC, 
however they are not exchangeable due to differences in their semantics [29]. We 
decided to support optimistic transactions, as supported by Corso, because they 
provide a higher degree of concurrency, if read operations are more frequent than 
write operations, which results in a higher throughput, because they are free of 
deadlocks without the introduction of additional, semantically sophisticated timeout 
parameters [20]. Finally, because they enable a pragmatic integration of a data access 
layer, which itself does not support a transaction interface. A property of optimistic 
transactions is that a commit of a transaction may fail even if all previous operations 
using that transaction succeeded. In practice this can mostly be overcome by 
repeating the whole transaction. Regarding transactional semantics, all TS operations 
fall in one of the following categories:  

• Blocking retrieval operations: The semantics of a transactional read opera-
tion is that at commit time of the transaction the named graph must be in the 
same state as observed at read. Otherwise the commit fails. The same is true 



for take operations; additionally, if the commit succeeds, the named graph is 
removed from the space. An update has the semantics of a take followed by 
a write. An important property of this category of operations is that the 
transactional semantics only depend on the affected named graph. Intuitively 
this is clear: a named graph A can be read or updated independently from 
another named graph B. As a result no global view of a space is needed for 
transactional operations of this category. For example, a named graph can be 
taken even if some of the participating TS kernels are offline, as long as the 
coordination layer guarantees the above semantics.  

• Non-blocking retrieval operations: If a non-blocking operation returns a 
named graph, the semantics are as described for the blocking read operation. 
If, however, no named graph is returned, because no existing named graph 
matches the given template, different semantics are possible. Strict semantics 
would guarantee that at commit time still no matching named graph exists. 
This, however, requires a global view to the whole Triple Space, i.e. it must 
be guaranteed that at no other TS kernel a matching named graph has been 
written - after the non-blocking operation and before the commit. This is 
infeasible if TS kernels should be allowed to be disconnected from the 
network and should thus be able to be used for writing new named graphs to 
a space. That's why relaxed semantics are more reasonable: If a non-
blocking read or take operation does not return a named graph, it means that 
currently no matching named graph could be found, however no guarantees 
are made that in fact no matching named graph exists (anywhere in the 
distributed Triple Space).  

• Write a graph to a space: Writing a graph to a space can always succeed, 
i.e. a write operation never causes a transaction to fail. This is especially 
useful if a heavy client wants to produce data even if it is offline. If, 
however, the transaction used for a write fails for some other reason, the 
written graph will be discarded. This is especially useful if a heavy client 
wants to produce data even if it is offline.  

• Other global operations: As non-blocking read and take operations, the 
count operation needs a global view to the Triple Space for strict transaction 
semantics. Relaxed transaction semantics are not applicable since this would 
be equivalent to using no transaction at all.  

The effects of all operations do not become globally visible until the used transac-
tion has been committed successfully. After a successful commit all effects need to be 
propagated to all other involved TS kernels and to the local data access layer. An 
important requirement for the coordination layer is to guarantee atomicity, consis-
tency and durability even in the presence of (partial) failures. As mentioned above, 
the transaction semantics of most operations depend on the affected named graph 
only. That's why operations, which address named graphs directly, such as write and 
the variants of read and take operations, which use a named graph URI parameter, 
can be realized comparable easily. In a first step, the affected named graph is associ-



ated with the transaction by the coordination layer. This usually involves communica-
tion with other TS kernels in order to collect information needed at commit time. 
Secondly, the data access layer may be used to retrieve the contents of named graphs. 
Finally, when the transaction has been committed successfully, the effects are propa-
gated to the data access layer.  

Operations which take templates are more complicated. In a first step the data 
access layer is used to find out about the affected named graphs, e.g. to find a named 
graph which matches a given template. In a second step the affected named graphs 
could be bound to the transaction - however this is too late, since it cannot be 
guaranteed that the named graphs observed by the data access layer have not changed 
between step one and two.  

Multiple TS kernels may be used to span a distributed Triple Space. To realize a 
distributed Triple Space, the coordination layers of all involved TS kernels 
communicate in order to distribute and access data. The physical addresses of the 
kernels are in general independent from the URIs used to identify a Triple Space. For 
example, two TS kernels deployed on 192.168.0.1 and 192.168.0.2 can span the 
Triple Space example/abc. The coordination layer is responsible to discover all TS 
kernels spanning a Triple Space. 

4   Conclusion and future work 

In this paper, we describe the current status of the development of Triple Space 
Computing as a novel communication and coordination framework that combines 
Semantic Web technologies and tuple space computing for Semantic Web Services. 
We have conducted current state of the art studies in related fields and identify the 
value added by TSC. Based on this, we propose the overall architecture of TSC and 
explain the interactions among different components.  

TSC is an Austrian national funded project which still has two years to go. During 
these two years, we will provide a consolidated TSC architecture and interfaces for 
cooperation among the components and for the TSC infrastructure as a whole, 
especially design mediation and query engine components for TSC. Furthermore, we 
will focus on data replication, security and privacy mechanisms in TSC, to investigate 
the relation between WSMO7 and TSC conceptual model and to find out how 
standard architectures (REST, SOA) can be better applied in TSC. In the end, a 
running prototype will be provided and the usability will be tested via a case study on 
how TSC can enhance message communication and process coordination in WSMX8. 

                                                           
7 http://www.wsmo.org 
8 http://www.wsmx.org 
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