
Bridging Multi Agent Systems and Web Services: towards interoperability
between Software Agents and Semantic Web Services

Omair Shafiq, Ying Ding, Dieter Fensel

Digital Enterprise Research Institute (DERI)
ICT Technology Park, Technikerstrasse 21a,

University of Innsbruck (UIBK),
6020 Innsbruck, Austria.

E-mail: {omair.shafiq,ying.ding,dieter.fensel}@deri.org

Abstract

The Semantic Web Services have been emerging to
enable dynamic service discovery, composition,
invocation, execution monitoring. On the other hand,
Software Agents are envisioned as autonomous,
proactive software entities that act on behalf its users
according to a given agenda of goals. Software Agents
have been envisioned as potential user of Semantic
Web Services in order to interact with semantic
descriptions of SWS to autonomously discover, select,
compose, invoke and execute the services based on
user requirements. However, there exists a
communication gap among the both. The major reason
is that Software Agents are not compatible with widely
accepted standards of Web Services. This paper
provides a solution to make Multi Agent Systems
compatible with existing Web Services standards
without changing their existing specifications and
implementations, with an assumption that it will be
helpful for enabling further interoperability between
Software Agents and Semantic Web Services.
AgentWeb Gateway is an initiative for dynamic and
seamless interoperation of Multi Agent Systems and
Web Services. We present abstract architecture and
detailed design of the proposed system, abstract
algorithms for required protocol transformations,
evaluation of the system and analysis of results.

1. Introduction

The next generation of Web as Semantic Web
Services envisions Web Services to be dynamically
discovered, composed, invoked and executed.
Software agent is a computer system which is capable
of flexible autonomous action in a dynamic,
unpredictable and open environment [9]. Agent
technologies are a natural extension of current
component based approaches [7], and have the

potential to greatly impact the lives and work of all of
us and, accordingly, this area is one of the most
dynamic and exciting in computer science today.
Hence, software agents being autonomous and
proactive entities can be used to realize this vision by
enabling interoperation between Software Agents and
Semantic Web Services [30]. However, the current
specification and implementation of Multi Agent
Systems are not compatible with existing web
standards. That is why, currently software agents and
multi agent systems technologies cannot be used and
communicate with Semantic Web Services. As a first
step to bridge this communication gap, we introduce a
middleware namely AgentWeb Gateway in between
both the systems (Multi Agent Systems and Web
Services) that enables software agents to dynamically
and seamlessly discover, publish and invoke the web
services in multi agent systems and vice versa. This
will make the Software Agents and Multi Agent
Systems compatible with existing Web Services
standards. It will help is extending it further to enable
the interoperability of Software Agents with Semantic
Web Services.

A lot of work has been done by many other research
communities to fulfill this communication gap, which
enabled for the first time the major specification
governing body of Software Agents and Multi Agent
Systems, IEEE standards committee FIPA (Foundation
of Intelligent Physical Agents) to show its interest for
adapting Semantic Web and Web Services standards in
its evolving specifications as a sub-group named
Agents and Web Services Interoperability Working
Group (AWSI) [28]. However, there are a number of
limitations that exists in context of accuracy and
functionality.

We have proposed AgentWeb Gateway [17] for
interoperation of Software Agents and existing Web
Services standards. It enables service discovery,
service description transformation and service

invocation among software agents and web services
without disturbing the existing specifications of both.
Major challenges are involved in this integration is that
both the technologies use different service registries,
service description languages and communication
protocols.

Figure 1: Middleware requirement for

required integration

AgentWeb Gateway middleware provides solution

for both the challenges by providing appropriate
transformation mechanisms. The importance of this
approach is that it enables integration of Software
Agents and Web services without changing their
existing specifications at the cost of time taken for
translations which is negligible as compared to a
transaction.

The paper further presents the detailed design of
proposed system i.e. AgentWeb Gateway middleware,
algorithms used for required transformation, evaluation
of system with examples, observations on results, and
finally draws conclusion and future work.

2. AgentWeb Gateway – Detailed Design

AgentWeb Gateway is going to provide the first step

towards interoperation of Software Agents and

Semantic Web Services. This first tep will enable
Software Agents to discover, compose, invoke and
monitor Web Services. Software Agents and Multi
Agent Systems specifications are governed by FIPA
(Foundation of Intelligent Physical Agents) and
specifications of Web Services are governed by W3C,
hence there is a lot of difference among specifications
of both technologies and hence Software Agents and
Web Service cannot communicate with each other.

We provide AgentWeb Gateway that acts as
middleware between Multi Agent System and Web
Services Framework and without changing existing
specifications of both technologies.

It provides Service Discovery transformation,
Service Description transformation and
Communication Protocol transformation. Which means
that using AgentWeb Gateway, without changing any
specification of FIPA and W3C (agents and web
services)

1. Software Agents can discover Web Services
in Web Service registry (UDDI)

2. Software Agents can publish their services in
Web Service registry (UDDI)

3. Software Agents can invoke Web Services
4. Web Service clients can discover Software

Agents in Directory Facilitator (DF) of Agent
Platform

5. Web Services can be published in Directory
Facilitator (DF) of Agent Platform

6. Web Service clients can invoke Software
Agents

This section describes the detailed design of
proposed system in which the most important technical
challenges are solved, i.e. without changing any

Figure 2: Detailed design of AgentWeb Gateway middleware

specification and implementation of Grid and Agents
by enabling two-way Service Discovery, Service
Publishing and Service invocation among Software
Agents and Web-Services.

2.1. Service Discovery converter
This section presents the details of first component of

AgentWeb Gateway which is called as Service
Discovery Converter. This component enables service
discovery among Software Agents and Web services
i.e. Software Agents can do service discovery in Web
Services registry as Universal Description Discovery
and Integration (UDDI) and Web Service clients can
do service discovery in Multi Agent Systems service
registry as Directory Facilitator (DF).

2.1.1. DF to UDDI search query converter:

Whenever a Software Agent searches some service,
it performs lookup for the Agent in Directory
Facilitator (DF) of Multi Agent System by sending
required DF-Agent-Description. If DF does not have
the required agent registered, it redirects its search to
the middleware by sending an ACL (Agent
Communication Language) message. As soon as the
middleware input interface receives message, it passes
it to DF-Agent-Description analyzer. It extracts out
three major portions of information i.e. information
about Agent that provides the required service,
required service description and inputs and outputs of
the services.

Figure 3: Software Agent searching for required

service in UDDI

The information about Agent providing required

services is far waded to Business Entity builder where
it is mapped to Business Entity for UDDI search query.
Information about required service descriptions and its
properties are forwarded to Business service builder
where it is mapped to name and description of required
service and its inputs and outputs. The generated
business entity and business service is forwarded to
UDDI search query builder.

A search is performed in UDDI and if required
service is found, a message is returned by the UDDI as
SOAP based search query response to the middleware
which is converted back to a valid ACL based search
response message and sends back to DF. The DF
further forwards the message to Software Agent that
requested for search. In this way, the middleware has
helped a Software Agent to search for the services in
UDDI with an illusion that it is searching Agent
services in DF of Agent Platform. Whole description
can be visualized from figure 3.

2.1.2. UDDI to DF search query converter:

Whenever SOAP based Web service client needs
some service, it performs lookup for the service in
UDDI, if the UDDI doesn’t have the required service,
it redirects its search to the middleware by sending a
simple SOAP based UDDI search request message. As
soon as the middleware input interface receives
message, it passes it to UDDI search query analyzer. It
extracts out information about business entity and
business service. Information about business entity is
sent to Agent description builder there business entity
is mapped over information about Agent providing
required service. Information about business service is
forwarded to service description builder and property
builder where service name and type is used for
building service description and inputs and output
parameters are used for building property.

Figure 4: WS client searching for required service in

Agent Platform

The generated Agent description, service description

and property are forwarded to DF search query builder
where DF-Agent-Description is generated and
forwarded to DF of search. Directory Facilitator of the
Agent Platform performs a search. If required service
is found, a message is returned by the DF of that
remote Agent Platform to the agent at our middleware
which transforms ACL based DF search response back
to SOAP based UDDI search response and sends to the
UDDI lookup service which further forwards message

to the Web Service client requested for the search as
shown in figure 4. In this way, the middleware helps
the Web Service client to search for the services at
Agent Platform. The SOAP response message contains
the address of the middleware which means that Web
Service client is given an illusion that the required
service is available as Web Service at middleware.

2.2. Service Description converter
This section presents the details of second

component of AgentWeb Gateway which is called as
Service Description Converter. This component
enables service publishing among Software Agents and
Web services i.e. Software Agents can publish services
in Web Services registry as Universal Description
Discovery and Integration (UDDI) and Web Services
can be published in Multi Agent Systems service
registry as Directory Facilitator (DF).

2.2.1. WSDL to DF-Agent-Description converter

When a Software Agent comes to know about the
existence and address of the required service and now
the agent is required to consume the service. In order
to consume the service, Software Agent is needed to
know about the Ontology, AgentAction Schema,
Predicate Schema and Concept Schema etc.

Figure 5: WSDL to DF-Agent-Description conversion:

Agent understanding WSDL

On the other hand Middleware has the address for

Services Description Language (WSDL) file. WSDL
Analyzer, a component as obvious from name gets the
WSDL file of required Web Service and analyzes
portTypes, SOAP bindings for service and extracts out
useful information from it. This extracted information
is then passed further. For all complex types in the
WSDL, Ontology (concept schema) is generated.
Information about portType and binding is forwarded
to DF-Agent-Description builder where the required
the final ‘Directory Facilitator Agent Description’ is
generated and given to Gateway Agent which further
send an ACL based publish request to Directory
Facilitator.

Transformation is performed from WSDL of Web
service into a form (DF-Agent-Description) that
Software Agents can understand. In this way we have
made the Web Service description published in Agent
Platform in order to make it understandable for
Software Agents. Figure 5 explains whole scenario.

2.2.2. DF-Agent-Description to WSDL converter

This section explains that how a Software Agent
publishes its services in Web Services registry UDDI.
Information about services provided by an agent is
stored as “Directory Facilitator Agent Description”
(DF-Agent-Description) ontology in Directory
Facilitator which is transformed by Service
Description converter into WSDL. The whole
transformation process is given below:

First of all DF-Agent-Description ontology is
analyzed and description about Agent i.e. AgentID is
taken out and is mapped to Service-End-Point of
WSDL to be built. There are one or more Service-
Descriptions available in this ontology which has
information about the services of the agent. Name of
each service is mapped to name of operation in
portType of WSDL.

Figure 6: DF-Agent-Description to WSDL

conversion: Agent publishing its services in UDDI

Each Service-Description of DF-Agent-Description

has Property objects which indicate inputs and outputs
of the corresponding services of the agent. Each
Property object is checked. If it belongs to Predicate
Schema (Predicate schema indicates propositions of an
Agent) of Agent’s ontology, it is treated as output of
the corresponding operation of portType in WSDL. If
the Property object belongs to Action schema of
ontology (Action schema indicates the activities that
can be carried out by an agent), it is then treated as
input argument of the corresponding operation. After
getting all the information about operation names,
inputs and output, a java interface code is generated.

The java code is passed to Java to WSDL converter
in order to translate the interface code into a WSDL to
make it understandable for Web Service clients.
WSDL file is generated and sent to Web Service client

and may be used for preparation of SOAP requests.
Same WSDL file can be published in UDDI which will
make the Agent, publish it services in Web Services
world to make it understandable for Web Service
clients. In this way a Software Agents gets its services
published in UDDI by transformation of its DF-Agent-
Description ontology into WSDL by Service
Description converter of Agent Web Gateway.

2.3. Communication Protocol converter
This section presents the details of third component

of AgentWeb Gateway which is called as
Communication Protocol Converter. This component
enables service invocation among Software Agents and
Web services i.e. Software Agents can invoke Web
Services and Web Service clients can invoke Software
Agents in Multi Agent Systems.

2.3.1. ACL to SOAP converter

In previous sections, middleware has helped the
Software Agent to search and understand services.
Now the Software Agent is ready to consume the
service. Software Agents gets the DF-Agent-
Description ontology (which was generated in
previous step) with an illusion that Gateway Agent is
providing the required services. After getting ontology
(DF-Agent-Description) from Agent, Software Agent
sends an ACL request message having input
parameters to the middleware.

Figure 7: ACL to SOAP conversion: Software Agent

invoking a service

Input interface receives the message and passes it to

ACL2SOAP protocol converter. This converter
extracts out the input parameters from ACL request
message and creates an equivalent SOAP message.
The SOAP client at middleware is directed to send the
generated SOAP request message is sent to the Web
Service at remote Web Server providing required
services.

The Service after receiving SOAP request message
processes the input parameters and then returns the
output in the form of an SOAP response message to
the SOAP client at middleware which upon receiving
the SOAP response message passes it to SOAP2ACL

protocol converter which extracts outputs from SOAP
message and generates a ACL response message as
shown in figure 7. The generated ACL message is then
sent to the Software Agent. In this way, the
middleware helps the Software Agent search,
understand and consume Web Services.

2.3.2. SOAP to ACL converter

Up till now, the middleware has helped the Web
Service client to search and understand the services
provided by Agents. Now the Web Service client is
ready to consume the services provided by the Agent.
This time Web Service client communicates with the
middleware with an illusion that it is the required Web
Service.

Figure 8: SOAP to ACL conversion: WS client

consuming services provided by Agent

The client generates a SOAP request message

(according to the service description which it got in
WSDL) having input parameters. This SOAP request
message is sent to the middleware. Input interface
receives the message and passes it to SOAP2ACL
protocol converter. This converter extracts out the
input parameters from SOAP input message and
creates an equivalent ACL message. The Agent at
middleware is directed to send the generated ACL
request message is sent to the Agent at remote platform
providing required services.

The Agent after receiving ACL request message
processes the input parameters and then returns the
output in the form of an ACL response message to the
Agent at middleware. The Agent at middleware upon
receiving the ACL response message passes it to
ACL2SOAP protocol converter which extracts outputs
from ACL message and generates a SOAP response
message. The SOAP response message is finally sent
to the Web Service client as shown in figure 8. In this
way, the middleware helps the Web Service client
search, understand and consume services provided by
Software Agents.

3. Testing and Evaluation

This section presents some useful scenarios for
evaluation of the algorithms presented in previous
section.

3.1. Evaluation of Service Discovery
transformation

This section presents a scenario for evaluation of the
algorithms for service discovery transformation. Here
we show how a Web Service client performs service
discovery in DF of Agent Platform. The request
initiated by Web service client is UDDI search query
which is as follows:

 <businessEntity
 businessKey="677cfa1a-2717-4620-be39-6631bb74b6e1"
 operator="test " authorizedName=" Omair Shafiq: 86">
 <discoveryURLs>
 <discoveryURL useType="businessEntity">
http://uddi.rte.microsoft.com/discovery?businessKey=677cfa1a-2717-4620-be39-
6631bb74b6e1
 </discoveryURL>
 </discoveryURLs>
 <name xml:lang="en">CalculatorXmlWS</name>
<description xml:lang="en">Testing for AgentWeb Gateway by M. Omair Shafiq
</description>
 <businessServices>
 <businessService
 serviceKey="d8091de4-0a4a-4061-9979-5d19131aece5"
 businessKey="677cfa1a-2717-4620-be39-6631bb74b6e1">
 <name xml:lang="en">Math Service</name>
 <description xml:lang="en">
 Math Service
 </description>
 <bindingTemplates>
 <bindingTemplate
 bindingKey="942595d7-0311-48b7-9c65-995748a3a8af"
 serviceKey="d8091de4-0a4a-4061-9979-5d19131aece5">
 <accessPoint URLType="http">
 http://202.83.166.177:8080/axis/Calculator.jws </accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo
 tModelKey="uuid:42fab02f-300a-4315-aa4a-f97242ff6953">
 <instanceDetails>
 <overviewDoc>
 <overviewURL>
 http://202.83.166.177:8080/axis/Calculator.jws
 </overviewURL>
 </overviewDoc>
 </instanceDetails>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 </businessServices>
</businessEntity>

For the above mentioned generated UDDI search

query, following DF search query was produced by
service discovery converter of AgentWeb Gateway.

(REQUEST
:sender (agent-identifier :name Creator:77166138202@cern1-
7)
:receiver (set (:agent-identifier DF:77166138202@cern1-7))
:content "((search-service (:service-description : name Math
Service)))"
:ontology Directory-Facilitator)

The ACL message generated above is DF search
query which is sent to DF for service discovery.

3.2. Evaluation of Service Description
transformation algorithms

This section presents a scenario for evaluation of the
algorithms for service description transformation. We
take a Web Services named ‘Calculator’ that contains
one operation ‘add’ which requires two primitive
integer types of arguments and has returns type of
integer as well. Web Service Description Language
(WSDL) (given below) of the web service is in plain
text and is human readable.

<?xml version="1.0" encoding="UTF-8" ?>
 <wsdl:definitions targetNamespace="http://localhost:8080/axis/Calculator.jws"
<types>
 <xsd:schema
 targetNamespace="http://www.ecerami.com/schema"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="argument">
 <xsd:sequence>
 <xsd:element name="i1" type="xsd:int"/>
 <xsd:element name="i2" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>
 <wsdl:message name="addResponse">
 <wsdl:part name="addReturn" type="xsd:int" />
 </wsdl:message>
 <wsdl:message name="addRequest">
 <wsdl:part name="i1" type="xsd:argument" />
 </wsdl:message>
 <wsdl:portType name="Calculator">
 <wsdl:operation name="add">
 <wsdl:input message="impl:addRequest" name="addRequest" />
 <wsdl:output message="impl:addResponse" name="addResponse" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="CalculatorSoapBinding" type="impl:Calculator">
 <wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="add">
 <wsdlsoap:operation soapAction="" />
 <wsdl:input name="addRequest">
 <wsdlsoap:body …/>
 </wsdl:input>
 <wsdl:output name="addResponse">
 <wsdlsoap:body …namespace="http…/axis/Calculator.jws"
use="encoded" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="CalculatorService">
 <wsdl:port binding="impl:CalculatorSoapBinding" name="Calculator">
 <wsdlsoap:address location="http://localhost:8080/axis/Calculator.jws" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

In case of interoperability among Agents and Web

Services, WSDL of calculator web services is to be
published in Directory Facilitator of Agent Platform
and hence WSDL is transformed by service description
transformation component of AgentWeb Gateway into
Directory Facilitator Agent Description
(DFAgentDescription). DFAgentDescription is
serialized in binary format and is not human readable.
Information about DFAgentDescription about object
having values is shown below:

DFAgentDescription
 - AgentID = ‘CalculatorAgent:reverse-ip@machine-name’
 - Ontologies = ‘CAOntology’
 - Protocols = ‘’
- Languages = ‘’
- Lease time= ‘default’
- Scope = ‘default’

 Service-Description
 - Name = ‘add’
 - Type = ‘Math’
 - Ontologies = ‘addOntology’
 - Protocols = ‘’
 - Languages = ‘’
 - Ownership = ‘CalculatorAgent’
 Property
 - Name = ‘addRequest’
 - Value = ‘AddRequestActionSchema’

 - Name = ‘addReturn’
 - Value =
‘AddResponsePredicateSchema’

addOntology has following information:

addOntology
 Concept Schema
 - Name = ‘argument’
 AgentAction Schema
 - Name = i1
 - Schema = Concept (argument)
 Predicate Schema
 - Name = addReturn
 - Schema = Primitive (Integer)
argument (concept schema)
 - name = ‘i1’
 - type = Primitive (Integer)

 - name = ‘i2’
 - type = Primitive (Integer)

In order to publish Web Services Description
Language (WSDL) of Web Service in Directory
Facilitator, it has been converted into Directory
Facilitator Agent Description (DFAgentDescription) as
given above according to algorithm in section 7.1.

Similarly, a transformation would be required from
Directory Facilitator Agent Description
(DFAgentDescription) to Web Services Description
Language (WSDL) according to the algorithm given in
section 7.2.

3.3. Evaluation of Communication Protocol
transformation algorithms

This section completes the above mentioned
scenario, i.e. after service description transformation,
communication protocol transformation is required for
service invocation. Consider a WS/SOAP client want
to get services provided by an Agent that provides
services of add, subtract etc. The WS/SOAP client
would send request in according to its SOAP format as
follows:
SOAP Request
POST /InStock HTTP/1.1
Host: http://202.83.166.177:8080/axis/Calculator.jws
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">

<soap:Body
xmlns:m="http://202.83.166.177:8080/axis/Calculator.jws">
 <m:add>
 <m:i1>2</m:i2>
 <m:i1>3</m:i2>
 </m:add>
 </soap:Body>
</soap:Envelope>

Using communication protocol converter of
AgentWeb Gateway, the SOAP message will be
transformed into ACL request according to the
algorithm presented in section 8.1. The transformed
ACL request is given below:
Transformed ACL Request
(request
 :sender (agent-identifier
 :name Gateway:78166138202@Cern1-7
 :addresses (sequence http://202.83.166.187:7776/acc))
 :receiver (set (agent-identifier
 :name MathAgent@78166138202@Cern1-7
 :addresses (sequence http://202.83.166.187:9999/acc)))
 :content
 "(action (addAgentAction
 :properties (set
 (property i1 2)
 (property i2 3)))")

The transformed ACL message will be forwarded to
the actual agent (MathAgent) providing the required
add service. The MathAgent would response
accordingly in ACL which will be received by
Gateway Agent. The ACL response is given below:
ACL Response
(request
 :sender (agent-identifier
 :name MathAgent:78166138202@Cern1-7
 :addresses (sequence http://202.83.166.187:7776/acc))
 :receiver (set (agent-identifier
 :name Gateway@78166138202@Cern1-7
 :addresses (sequence http://202.83.166.187:9999/acc)))
 :content
 "(action (addAgentAction
 :properties (set
 (property addResult 5)))")

Using communication protocol converter of
AgentWeb Gateway, the ACL response message
would be converted into SOAP response message
according to the algorithm presented in section 8.2.
The transformed SOAP response is given below:
SOAP Response
HTTP/1.1 200 OK
Content-Type: application/soap; charset=utf-8
Content-Length: nnn<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
 <soap:Body
xmlns:m="http://202.83.166.177:8080/axis/Calculator.jws">
 <m:add>
 <m:addResult>5</m:addResult>
 </m:add>
 </soap:Body>

</soap:Envelope>

4. Results and Analysis

This section presents results of required

transformations i.e. Service Description transformation
and Communication Protocol transformation.

4.1. Service discovery transformation results

The service discovery transformation is carried out
with 100% accuracy as it is based on keyword based
search. However the delay imposed in the conversion
depends on number of business services that are
present in a business entity of a UDDI search query.

When a Web Services client searches for some
Agent from Directory Facilitator of Multi Agent
System, time required for the transformation of UDDI
search query depends on the number of
BusinessServices entries under the BusinessEntity of
UDDI search query. Same is the case for vice versa,
i.e. when an Agent wants to search for some web
services in UDDI, time required for transformation of
DF search query into UDDI search query depends on
number of services specified under the description of
an Agent.

Figure 9: Performance analysis of service discovery

transformations

Figure 9 below shows the analysis of delay that

occurs while transforming the DF search query into
UDDI search query and vice versa in order to enable
Software Agents discover Web Services from UDDI
and vice versa. The line of increment in delay of
transformation shows linear behavior. For a given
number of parameters to be searched in the query, DF
search query to UDDI search query conversion takes
lesser time than that of UDDI search query to DF
search query due to the fact that Reason for this is
UDDI search query requires more time to be parsed as
it is basically and XML document, whereas DF search
query is in the form of object and binary based.

4.2. Service description transformation results

Accuracy depends on the provided information of
Web Service in WSDL and Software Agent in
DFAgentDescription. If it is completely valid then
100% results can be obtained. In case of a Software
Agent publishing services in UDDI
(DFAgentDescription to WSDL conversion), time
required for transformation for Service description
depends upon the complexity of ontology and number
of service-description in DFAgentDescription.

In case of Web Services publishing its services in
Directory Facilitator (WSDL to DFAgentDescription
conversion), time required for transformation for
service description depends on Complex-Types and
number of operations in portType of WSDL.

Figure 10 shows our analysis of the delay that
occurs in the process of transformation on either side.
In case of DFAgentDescription to WSDL conversion
for an Agent to publish its services in UDDI, It was
observed that as number of services of an agent
increases the time taken for transformation also
increases. Same is the case for WSDL to
DFAgentDescription when a Web Service is to be
published in Directory Facilitator, delay in
transformation increases with increase in number of
operations in portType of WSDL.

Figure 10: Performance analysis of service

description transformations

Next observation is that line of increment in delay of

transformation shows exponential behavior. Reason for
exponential behavior of increment is as there is
increment of one operation in portType of WSDL; it
would have some input message, output message,
elements and complex types (optional). Same is the
case in with DFAgentDescription.

Graph of WSDL to DFAgentDescription
transformation has rapid increase than in case of
DFAgentDescription to WSDL transformation. Reason
for this is WSDL file requires more time in parsing as
is based on file with plain text than that of

DFAgentDescription which is in the form of object and
binary based.

4.3. Communication protocol transformation
results

Both in SOAP request/response message and ACL
message, only one operation or AgentAction/Predicate
respectively can be targeted in a single call. Accuracy
of SOAP to ACL and ACL to SOAP transformation
depends upon the accuracy of message. A valid
message would be transformed into it’s vice versa with
100% accuracy.

In case of a Software Agent invokes a Web Service,
time required for communication protocol
transformation (ACL to SOAP conversion) depends
upon the complexity of schema of Property objects in
Service-Description of DF-Agent-Description of an
Agent. If there are primitive schemas only, then
transformation process would take almost similar time
as expected. In case of concept schema involved,
additional time would be required for transformation
of concept schema into complex type.

In case of a Web Service client invokes a Software
Agent, time required for communication protocol
transformation (SOAP to ACL conversion) depends
upon the complexity of input and output parameters. If
inputs and outputs are primitive data-types,
transformation process would take almost similar time
as expected. If there are complex data-types involved,
additional time would be required for transformation
of complex data-type into ontology (concept schema).

Figure 11: Performance analysis of communication

protocol transformation

In figure 11, we have analyzed the delay occurs in

the process of transformation on either side. In case of
ACL to SOAP conversion for an Agent to invoke web
service, it was observed that as number of parameters
SOAP message increases, the time taken for
transformation also increases. Same is the case for
ACL to SOAP when a Web Service client is to invoke
an Agent, delay in transformation increases with

increase in number of Property elements of content of
ACL message. Next observation is that line of
increment in delay of transformation shows linear
behavior. Exponential behavior can only be shown in
case of complex data-types are used. For a given
number of parameters, ACL to SOAP conversion takes
little less time as compared to SOAP to ACL
conversion. Reason for this is SOAP requires more
time parsing as it is based on plain text than that of
ACL message which is in the form of object and
binary based.

5. Conclusions and Future Work

In order to fulfill the needs of emerging distributed
applications with higher complexity, Software Agents
and Multi Agent System are envisioned to be
interoperable with emerging Semantic Web Services.
But firstly, the Multi Agent Systems have to be
compliant to the widely accepted standards of Web
Services. This paper provides an initial step to do so by
bridging the communication gap among Multi Agent
System and Web Services without changing their
existing specifications and implementations by
providing AgentWeb Gateway that acts as a
middleware between the both technologies. It is
facilitated by carrying out two way dynamic and
seamless transformations for service discovery, service
description and communication protocols. This paper
provides detailed design of the system along with
detailed functional components of each of its
components, algorithms for required transformations,
evaluation of the system with examples and critical
analysis of the results.

After enabling Multi Agent Systems compatible
with existing Web Services standards, next step is to
extend this further to Semantic Web Services, i.e. to
enable Software Agents understand the semantic
descriptions of SWS or semantically interact with
SWS. It will bring the Semantic Web to next level of
automation where goal-oriented Software Agents on
behalf of their users proactively and dynamically
discover, select, compose, mediate and invoke Web
Services based on user’s requirements.

Acknowledgements

Authors would like to thank for partial funding support
from Austrian Government under FIT-IT GRISINO
project, Higher Education Commission of Pakistan
(HEC) Islamabad Pakistan and Communication
Technologies (Comtec) Sendai Japan.

References

 [1] S. Tuecke, ANL; K. Czajkowski, USC/ISI; I. Foster,
ANL; J. Frey, IBM; S. Graham, IBM; C. Kesselman,
USC/ISI; T. Maquire, IBM; T. Sandholm, ANL; D. Snelling,
Fujitsu Labs; P. Vanderbilt, NASA, GWD-R "Open Grid
Services Infrastructure (OGSI) Version 1.0".
[2] I. Foster, D. Snelling, “Web Service Resource
Framework – WSRF”, http://www.globus.org/wsrf/faq.asp,
March 2004
[3] I. Foster, Nicholas R. Jennings, Carl Kesselman, "Brain
Meets Brawn: Why Grid and Agents Need Each Other",
Proc. Autonomous Agents and Multi Agent Systems
(AAMAS) July 2004.
[4] The Web Services Agent Integration Project
AgentCities.NET http://wsai.sourceforge.net
[5] H. Kuno and A. Sahai, "My Agent Wants to Talk to Your
Service: Personalizing Web Services through Agents" 1st
International Workshop on "Challenges in Open Agent
Systems, Bologna, Italy,July 2002.
[6] Agentcities: Building a Global Next-Generation Service
Environment – J. Dale, S. Willmott and B. Burg 10th June,
2002.
[7] M. Luck, P. McBurney, C. Preist, "Agent Technology:
Enabling Next Generation Computing - A Roadmap for
Agent Based Computing", January 2003, AgentLink II.
[8] I. Foster, and C. Kesselman (eds.). The Grid: Blueprint
for a New Computing Infrastructure (2nd Edition). Morgan
Kaufmann, 2004.
[9] M. Wooldridge, Agent-based software engineering. IEE
Proc. Software Engineering, 144. 26-37. 1997.
[10] N. R. Jennings, K. Sycra, M. Wooldbridge, “A
Roadmap of Agent Research and Development”,
Autonomous Agents and Multi-Agent Systems, pp.275-306,
Kluwer Academic Publisher, Boston,(1998).
[11] M. S. Raisinghani, “Electronic Commerce at the Dawn
of Third Millenium”, Idea Group Publishing, (2000).
[12] Global Grid Forum http://www.gridforum.org/
[13] I. Foster, C. Kesselman, J. Nick and S. Tueske, “The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration”, Globus,Project,
www.globus.org/research/papers/ogsa.pdf (2002).
[14] K. Mori, "Autonomous Decentralized Systems:
Concept, Data Field Architecture and Future Trends", Proc.
of the first International Symposium on ADS (ISADS93),
IEEE, Kawasaki, Japan, pp.28-34, 1993.
[15] R. Wolski, J. Brevik, J. Plank and T. Bryan, Grid
Resource Allocation and Control Using Computational
Economies. Berman, Wiley and Sons, 2003, 747-772.
[16] C. Walton and A. Barker, "An Agent-based e-Science
Experiment Builder", 1st International Workshop on
Semantic Intelligent Middleware for the Web and the Grid,
Valencia, Spain, August 2004.
[17] M. Wooldridge and N. R. Jennings, Software
Engineering with Agents: Pitfalls and Pratfalls. IEEE
Internet Computing, 3 (3). 20-27. 1999.
[18] H. F. Ahmad, K. Iqbal, A. Ali, H. Suguri, “Autonomous
Distributed Service System: Basic Concepts and Evaluation”,
Proc. The 2nd International Workshop on Grid and
Cooperative Computing, GCC 2003, pp. 432-439, Shanghai,
China.

[19] C. Goble, D. De Roure, N. R. Shadbolt and A.
Fernandes. Enhancing Services and Applications with
Knowledge and Semantics. The Grid: Blueprint for a New
Computing Infrastructure (2nd Edition), Morgan-Kaufmann,
2004.
[20] D. Levine and M. Wirt, Interactivity with Scalability:
Infrastructure for Multiplayer Games. The Grid: Blueprint
for a New Computing Infrastructure, Kaufmann, 2004.
[21] H. F. Ahmad, K. Mori, “Autonomous Information
Fading and Service-Guided Navigation Techniques for
Mobile Agents”, Proceeding of IEEE Computer Society,
SMC99 conference pp. II-83-II-II-87, (1999).
[22] H. Tsunemitsu, H. F. Ahmad, Helene, A. , K. Mori,
“Autonomous Decentralization Technology for Service
Integration of Different Service Providers”, 12th SICE
Symposium on Decentralized Autonomous Systems, pp. 373-
378 (2000).
[23] H. F. Ahmad, A. Ali, H. Suguri, Z. A. Khan, M.
Rehman, “Decentralized Multi Agent System: Basic
Thoughts”, 11th Assurance System Symposium, Sendai,
Japan 2004.
[24] A. Ghafoor, M. Rehman, Z. A. Khan, A. Ali, H. F.
Ahmad, H. Suguri, “SAGE: Next Generation MAS” pp. 139-
145, Vol 1. Navada, USA, 2004.
[25] S. Bashir, M. Rehman, H. F. Ahmad, A. Ali, H. Suguri.
“Distributed and Scalable Message Transport Service for
High Performance Multiagent Systems”, INCC 2004
Pakistan. pp. 152-157
[26] E. Christensen, F. Curbera, G. Meredith, S.
Weerawarana, "W3C specifications Web Services
Description Language (WSDL) 1.1"
[27] Foundation for Intelligent Physical Agents, FIPA Agent
Management Specifications 2002, SC00023J, Geneva,
Switzerland.
[28] IEEE-FIPA Agents and Web Services Interoperability
(AWSI) Working Group. Available at
http://www.fipa.org/subgroups/AWSI-WG.html
[29] M. O. Shafiq, H. F. Ahmad, H. Suguri and A. Ali,
“Autonomous Semantic Grid: Principles of Autonomous
Decentralized Systems for Grid Computing”, IEICE & IEEE
Joint Journal, Special issue on Autonomous Decentralized
Systems (ADS), Transactions on Information and Systems
E88-D(12):2640-2650, December 2005.
[30] D. Roman, U. Keller, H. Lausen, J. Bruijn, R. Lara, M.
Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel:
Web Service Modeling Ontology, Applied Ontology, 1(1):
77 - 106, 2005.

