
Chapter 5: Ontology management - Storing, aligning and 
maintaining ontologies 
Michel Klein, Ying Ding, Dieter Fensel, Borys Omelayenko 

1 Ontologies need to be managed  
In the OnToKnowledge project, several ontologies are developed and used in a 
number of applications and case-studies. Those ontologies need to be stored, 
sometimes aligned and their evolution needs to be managed. All these tasks together 
are called ontology management. These issues are not only relevant in the 
OnToKnowledge project, but are also in a broader context. 

Alignment is a central task in ontology reuse. Reuse of existing ontologies is often 
not requires considerable effort [Uschold et al, 1998]: the ontologies either need to be 
integrated [Pinto et al, 1999], which means that they are merged into one new 
ontology, or the ontologies can be kept separate. In both cases, the ontologies have to 
be aligned, which means that they have to be brought into mutual agreement. The 
problems that underlie the difficulties in integrating and aligning are the mismatches 
that may exist between separate ontologies. Ontologies can differ at the language 
level, which can mean that they are represented in a different syntax, or that the 
expressiveness of the ontology language is dissimilar. Ontologies also can have 
mismatches at the model level, for example in the paradigm, or modelling style 
[Klein, 2001]. 

Ontology alignment is also very relevant in a Semantic Web context. The Semantic 
Web will provide us with a lot of freely accessible domain specific ontologies. To  
form a real web of semantics – which will allow computers to combine and infer 
implicit knowledge – those separate ontologies should be aligned and linked.  

Support for evolving ontologies is required in almost all situations where ontologies 
are used in real-world applications. In those cases, ontologies are often developed by 
several persons and will continue to evolve over time, because of changes in the real-
world, adaptations to different tasks, or alignments to other ontologies. To prevent 
that such changes will invalidate existing usage, a change management methodology 
is needed. This involves advanced versioning methods for the development and the 
maintenance of ontologies, but also configuration management, that takes care of the 
identification, relations and interpretation of ontology versions. 

All these aspects come together in integrated ontology library systems. When the 
number of different ontologies is increasing, the task of storing, maintaining and re-
organising them to secure the successful re-use of ontologies is challenging. Ontology 
library systems can help in the grouping and re-organising ontologies for further re-
use, integration, maintenance, mapping and versioning. Basically, a library system 
offers various functions for managing, adapting and standardising groups of 
ontologies. Such integrated systems are a required for the Semantic Web to grow 
further and scale up. 

In this chapter, we will describe the results of the OnToKnowledge project with 
respect to the above mentioned areas. We start with a description of the alignment 
task and show a meta-ontology that is developed to specify the mappings. Then, we 
discuss the problems that are caused by evolving ontologies and describe two 
important elements of a change management methodology. Finally, in section 4, we 



survey existing library systems and formulate a wish-list of features of an ontology 
library system. 

2 Aligning ontologies 
For effective ontology interoperation, ontologies must be efficiently aligned. These 
alignments must explicitly represent the maximal possible share of the relationships 
between the ontologies and their elements to enable efficient ontology reuse.  

2.1 Why is aligning needed 
The knowledge management scenario, which is in focus in the OnToKnowledge 
project, assumes different departments and individual employees to create domain-
specific ontologies capturing specific aspects of their knowledge. Special mapping 
ontologies must be created to link different terminologies and modelling styles used in 
these domain specific ontologies, creating bridges between separated pieces of 
knowledge. These bridges along with domain ontologies are then used to perform 
cross-ontology information search and retrieval.  

In the B2B area different process, document, and vocabulary ontologies are created by 
different companies instead of the domain ontologies created in the knowledge 
management tasks. Process ontologies capture the ordering of procurement events, 
types of attached documents, and inter-dependency of the documents. Document 
ontologies specify conceptual models of the documents together with constraints. 
Vocabularies contain hierarchies of terms used in the documents. The mapping 
ontologies specify the correspondence between different processes, documents and 
vocabularies.   

Existing ontology mapping techniques primarily concern with weak ontology 
coupling [Mitra et al, 2000] needed to refer them and to query. In the business 
integration tasks mapping ontologies specify the transformations of instance 
documents and hence represent strong and well-grained correspondences. In this 
subsection we present an outline of a mapping meta-ontology that specifies a template 
for the B2B integration mapping ontologies.  

2.2 The B2B mapping tasks 
The document integration task [Omelayenko & Fensel, 2001], the kernel part of the 
B2B integration scenario, envisages the following document transformation chain. 
The transformation is performed between two XML documents of the source XML 
format and the target format. However, the complexity of the task does not allow to 
perform direct document transformation with XSLT [Clark, 1999] because the 
necessity to program numerous constraints and transformations for each new 
document format requires tremendous programming effort. Because of this the 
integration is performed via a mediating ontology that contains conceptual models for 
all the documents that appear during the integration process and necessary constraints 
to be checked during the transformation.  

2.2.1 The transformation process 
The transformation chain of a source document to the target document consists of the 
following steps as illustrated in Figure 1: 



• The source XML document is transformed to its conceptual model in RDF that 
captures all the objects (with a possible small hierarchy of their classes) and 
relations presented in the document.  

• The source conceptual model is aligned to the mediating ontology. These 
alignments allow applying the constraints presented in the mediating ontology to 
the source conceptual model. The document is then stored as an instance of the 
mediating ontology.  

• The target RDF conceptual model corresponds to the target document and is 
aligned to the mediating ontology. The target document is extracted from the 
mediating document according to these alignments. 

• The target XML document is re-constructed from its conceptual document.  

This chain represents a light version of ontology aligning: different conceptual models 
are aligned to a mediating ontology. This requires aligning classes and properties, but 
does not include axiom mapping. 
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Figure 1. The alignments for the B2B document integration task 

2.2.2 Mapping Meta-Ontology 
We developed the RDFT (RDF Transformation) mapping meta-ontology1 that 
specifies a small ontology for mapping XML DTDs to/and RDF Schemas and is built 
on top of RDF Schema. The basic class diagram is presented in Figure 2, where the 
classes are represented by their names, and name nesting indicates the is-a 
relationship. The main concept of RDFT is the bridge between two sets of concepts: the 
source set and the target set. The bridges are grouped into maps. Each Map is a collection 
of bridges serving a single purpose. The maps are identified by their names (URL’s) 
and form minimal reusable module of RDFT bridges.  

An abstract class Bridge describes common properties of bridges allowing only one-to-
many and many-to-one bridges. Each Bridge contains the ValueCorrespondance property 
linking a map between the instance values of the source and target entities.  

The bridges also contain the Relation property linking to one of the BridgeRelations: 
EquivalenceRelation or VersionRelation: 

                                                 
1 http://www.cs.vu.nl/~borys/RDFT 



• Equivalence bridges specify that the source element of a one-to-many bridge is 
equivalent to the target set of elements, and the source set of elements is 
equivalent to the target element for many-to-one bridges.  

• A Version bridge specifies that the target set of elements form a (later) version 
of the source set of elements. Opposite to equivalence bridges, they assume 
that both source and target concepts belong to the same domain (or document 
standard), and may refer to two concepts with the same name (but different 
namespaces indicating versions), and imply that all the relations that held for 
the original concept must hold for the versioned concept, if the opposite is not 
stated explicitly.  

Several types of Bridges are defined in RDFT: 

• Class2Class and Property2Property bridges between RDF Schema classes and 
properties. In RDF Schema classes are represented by their names, place in 
taxonomy, and properties that are attached to this class. Properties are defined 
as first-class objects together with classes, and they capture most of domain 
knowledge [Lassila & Swick, 1999]. Classes specify aggregation of properties, 
and thus we do not include class-to-property and property-to-class bridges in 

RDFT. These bridges occur at 
steps 2 and 3 of the integration 
process depicted in Figure 1. 
Class2Class bridges between a set 
of n source classes and a set of m 
target classes declares that a set 
of n instances of the classes 
listed as sources corresponds to a 
set of m instances of the classes 
listed as targets. Property2Property 
bridges have similar semantics 
related to properties. 

• Tag2Class and Tag2Property bridges 
between XML tags of the source 
DTD and the target RDF 
Schema classes and properties. 
They occur at step 1 of the 
integration process. 

• Class2Tag and Property2Tag bridges 
between RDF Schema classes 
and properties, and the elements 
of the target DTD. They occur at 
step 4 of the process. 

All of the bridges contain the ValueCorrespondance property inherited from the abstract 
Bridge class linking to a Map. Two types of Maps are defined in RDFT: 

• DeclarativeMap that specifies a set of bridges mapping all possible values to be 
mapped. 

• ProceduralMap specifies an XPath [Clark, 1999] expression transforming instance 
data. XPath defines the means for two tasks: addressing data elements in XML 
documents and performing element or attribute value transformations (Chapter 4 

Figure 2. RDFT class diagram 



of the specification2). In procedural maps we use only the second part of the 
XPath functions (e.g. substring_before). 

The bridges are linked to the maps with different Connectors. 

More information on RDFT is available from the RDF project homepage3.  

2.2.3 Mapping in OIL 
The RDFT meta-ontology is intended to serve as a template for creation mapping 
ontologies for the business integration tasks. It represents meta-classes that are then 
instantiated into user’s classes linking user’s domain ontologies. OIL was developed 
as an ontology representation language and contains less flexible means for defining 
meta-classes as RDF Schema does. However, it is still possible to represent RDFT 
semantics in OIL. 

We model the RDFT bridges in OIL in the following way. For each bridge we specify 
two classes that define the source and the target concepts to be mapped. For example, 
a one-to-many Class2Class bridge specifies the fact that each instance of the source class 
is equivalent to the set of instances, one instance of each target class. The 
correspondent bridge sources and bridge targets can be defined as follows: 
class-def BridgeSources 
  slot-constraint rdft_set_member has-value SourceClass 
 
class-def BridgeTargets 
  slot-constraint rdft_set_member has-value TargetClass1 
  slot-constraint rdft_set_member has-value TargetClass2 
  slot-constraint rdft_set_member has-value TargetClass3 
 

The equivalence of BridgeSources to BridgeTargets can be also modelled in OIL by an 
equivalent axiom: 
equivalent BridgeSources BridgeTargets 
 

This axiom specifies the fact that each instance of the SourceClass class is equivalent to 
three instances, one of the TargetClass1, the second is of the TargetClass2, and the third is 
of TargetClass3.  

However, statements over the bridges (e.g. Maps) need to be specified as statements 
over OIL axioms, and it is problematic to represent them in OIL directly. Despite of 
that bridge translation to OIL is still very useful because it allows to invoke an 
inference engine to perform knowledge-level validation of the bridges. 

2.3 Evaluation of OTK techniques 
Several techniques have been developed in the On-to-knowledge project that may be 
used in the B2B integration tasks. First, OIL can be used to model RDFT bridges and 
FaCT reasoner can be then used to check their consistency. Second, steps 2 and 3 of 
the transformation process depicted in Figure 1, deal only with RDF documents and 
their RDF Schemas. This allows using Sesame for storing and querying them. 

                                                 
2 http://www.w3.org/TR/xpath 
3 http://www.cs.vu.nl/~borys/RDFT 



3 Supporting ontology change 

3.1 Ontologies are changing 
Ontologies are a key technology in the OnToKnowledge project. All approaches for 
knowledge management and information retrieval in the project are based on such 
formal descriptions of particular domains. However, in practice those pieces of 
knowledge are not static, but evolve over time. Support to handle this evolution is 
needed. This is especially important when ontologies will be used in a decentralised 
and uncontrolled environment like the web, where changes occur without co-
ordination. Much more than in a controlled environment, this may have unexpected 
and unknown results. 

There are several reasons for changes in ontologies. According to Gruber [Gruber, 
1993], an ontology is a specification of a conceptualisation of a domain. Hence, 
changes in ontologies can be caused by either: 

• changes in the domain; 

• changes in the conceptualisation; 

• changes in the specification. 

The first type of change is often occurring. This problem is very well known from the 
area of database schema versioning. In [Ventrone et al, 1991], seven different 
situations are sketched in which changes in a domain (domain evolution) require 
changes to a database model. An example of this type of change is the merge of two 
university departments: this is a change in the real world, which requires that an 
ontology that describes this domain is modified, too. 

Changes in the conceptualisation are also frequently happening. It is important to 
realise that a shared conceptualisation of a domain – which is a requirement for 
information exchange – is not a static specification that is produced once in the 
history, but has to be reached over time. In Chapter 4, ontologies are described as 
dynamic networks of meaning, in which consensus is achieved in a social process of 
exchanging information and meaning. This view attributes a dual role to ontologies in 
information exchange: they provide consensus that is both a pre-requisite for 
information exchange and a result of this exchange process. 

An conceptualisation can also change because of the usage perspective. Different 
tasks may imply different views on the domain and consequently a different 
conceptualisation. When an ontology is adapted for a new task or a new domain, the 
modifications represent changes to the conceptualisation. For example, consider an 
ontology about traffic connections in Amsterdam, with concepts like roads, cycle-
tracks, canals, bridges and so on. When the ontology is adapted from a bicycle 
perspective to a water transport perspective, the conceptualisation of a bridge changes 
from a remedy for crossing a canal to a time consuming obstacle.  

Finally, a specification change is a kind of translation, i.e., a change in the way in 
which a conceptualisation is formally recorded. Although ontology translation is an 
important and non-trivial issue in many practical applications, it is less interesting 
from a change management perspective, for two reasons. First, an important goal of a 



translation is to retain the semantics, i.e., specification variants should be equivalent4 
and they thus only cause syntactic interoperability problems. Second, a translation is 
often created to use the ontology in an other context (i.e., an other application or 
system), which heavily reduces the importance of interoperability questions.   

Changes in ontologies are thus inevitable. In the next sections, we will look at 
characteristics of ontology changes and describe two elements of an ontology change  

3.2 Changes in ontologies involve several problems 
There are several problems involved with ontology changes. In this section we will 
look at incompatibilities caused by ontology changes, the specification of them, and at 
the conceptual implication of such changes.  

3.2.1 Effects of ontology change 
An important effect of the evolution of ontologies is that it might cause 
incompatibilities. Incompatibility for ontologies means that the original ontology can 
not be replaced by the changed version without causing side effects in the conforming 
data or the applications that use them. However, the real problem is that these side 
effects, and thus the meaning of compatibility, depend on the use of the ontology. 

• When an ontology is used to specify the meaning of data, this data may get an 
different interpretation or may use unknown terms. An example of this use is a 
web page which content is annotated with terms from an ontology. 

• If ontologies are built from other ontologies, changes to the source ontology may 
affect the meaning of the resulting ontologies. 

• Applications that use the ontology may also be hampered by changes to the 
ontology. In the ideal case, the conceptual knowledge that is necessary for an 
application should be merely specified in the ontology; however, in practice 
applications also use an internal model. This internal model may become 
incompatible with the ontology. 

The meaning of compatibility is different for each of those types of usage. In the first 
case, compatibility means the ability to interpret all the data correctly through the 
changed ontology. This is much like the interpretation of compatibility in database 
schema versioning. Compatibility here means “preservation of instance data”. 

In the second case, the effects of the changes on the logical model that the ontology 
forms are often important. Other ontologies that import an ontology might depend on 
the conclusions that can be drawn from the it. A change in the ontology should not 
make previous conclusions invalid.  In this case, compatibility means “consequence 
preservation”. 

Applications that use the ontology might depend on the logical model, but also on the 
characteristics of the ontology itself. For example, a web site that use an ontology for 
navigation can depend on the fact that there are only four top-level classes, or that the 
hierarchy is only three levels deep. A change that does not invalidate queries to 

                                                 
4 Although in practice a translation often implies a change in semantics, possibly caused by differences 
in the representation languages. See for a exploration of ontology language differences and mismatches 
[Corcho et al, 2000] and [Klein, 2001]. 



instance data or the logical model might invalidate queries to the ontology itself. This 
interpretation of compatibility is “preservation of answers to ontology queries”. 

3.2.2 Typical changes and their specification 
The specification of changes is another problem. There are many possible types of 
changes in ontologies, ranging from simple renamings to compound transformations. 
The specification of especially the latter is important, because the effect of a 
compound change can be different from the accumulated effect of steps that build the 
complex change [Lerner, 2000]. 

To make this more concrete, we will consider changes in a particular content 
standard, i.e. UNSPSC5. Content standards specify a standard hierarchy of products 
and services which can be used by companies to classify their actual products. This 
hierarchy can be considered as a simple ontology that specifies a consensus on the 
products that exist. Different companies that use the same content standard can easily 
communicate with respect to their products. Besides UNSPSC, which addresses a 
general and broad domain of products and services, there are several other standard 
classifications in use, e.g., RosettaNet6, which is targeted at IT industry, and 
e@Class7, another broad standard that originates from Germany. 

These standards tend to change very often. For example, when we take a look at 
UNSPSC, we see the following: 

• there were 16 updates between 31 January 2001 and 14 September 2001;  

• each update contained between 50 and 600 changes;  

• in 7,5 month, more than 20% of the current standard is changed! 

Although some parts of the UNSPSC schema might be more stable than other parts, it 
is clear that this amount of changes cannot be ignored. Such a high change rate can 
quickly invalidate a lot of the actual classifications of products. For example, the 
product “Binding elements” in version 8.0 is removed from the standard and three 
new products are added in version 8.1 (“Binding spines or snaps”, “Binding coils or 
wire loops”, and “Binding combs or strips”). This means that all products that were 
classified as “Binding elements” are unclassified under the new version.  

An analysis of differences between two version of content standards has yielded the 
following list of typical changes: class-title changes, additions of classes, relocations 
of classes in the hierarchy (by moving them up or down in the hierarchy, or 
horizontally), relocations of a whole subtree in the hierarchy, merges of two classes 
(in two variants: two classes become one new class, or one class is appended to the 
other class), splits of a classes, and pure deletions. However, current versioning 
techniques for content standards are often quite simple. In UNSPSC, for example, all 
changes are encoded as either additions, deletions or edits (title changes). This means 
that the relocation of a subtree is specified as a sequence of “delete a list of classes” 
and “add a list of classes”. 

                                                 
5 http://eccma.org/unspsc/ 
6 http://www.rosettanet.org/ 
7 http://www.eclass.de/ 



3.2.3 Conceptual implication of changes 
Another problem that is involved with ontology change is the possible discrepancy 
between changes in the specification and changes the conceptualisation. The actual 
specification of concepts and properties is a specific representation of the 
conceptualisation; however, the same concepts could also be specified differently. 
Hence, a change in the specification does not necessarily coincide with a change in 
the conceptualisation [Klein and Fensel, 2001], and changes in the specification of an 
ontology are not per definition ontological changes. 

For example, there are changes in the definition of a concept which are not meant to 
change the concept, and, the other way around, a concept can change without a 
change in its logical definition. An example of the first case is attaching a slot “fuel-
type” to a class “Car”. Both class-definitions still refer to the same ontological 
concept, but in the second version it is described more extensively. On the other hand, 
a natural language definition of a concept might change without a logical change in 
the definition of a concept, e.g. a new definition of “Chair” might exclude reclining-
chair.  

In the literature, these different types of changes are distinguished in the following 
way [Visser et al, 1997b; Klein 2001]: 

• a conceptual change is a change in the interpretation of a domain (i.e. the 
conceptualisation), which results in different ontological concepts or different  
relations between those concepts; 

• a explication change is a change in the way the conceptualisation is specified. 

It is impossible to determine the type of change automatically, because this is 
basically a decision of the ontology engineer. Therefore, it is necessary to allow 
ontology engineers to specify their intention of their change. If they characterise a 
change in a definition as “conceptual”, then the source and target definitions should 
be considered as different (even when their specification is the same), else, if a change 
is “explicational”, the two definitions can be regarded as equivalent. 

3.3 Change management 
A change management methodology that allows partly automatic transformation of 
data and ontologies between different versions is essential. Such a methodology 
should be able to cope with the different types of incompatibility, should allow a 
precise specification of changes, and should help ontology engineers to specify the 
conceptual consequence of the change. We will now discuss two aspects of such a 
methodology: a comparison tool for ontologies and a the change specification 
mechanism.  

3.3.1 Comparing ontologies 
An important aspect of a change management methodology is the ability to compare 
versions of ontologies and highlight the differences. This helps in finding changes in 
ontologies, even if those have occurred in an uncontrolled way, i.e., possibly by 
different people in an unknown order. In the framework of the OnToKnowledge 
project, an Ontology Versioning Server is being developed. The system provides a 
web-based system to manage changes in ontologies.  Its main function is to present a 
transparent interface to arbitrary versions of ontologies. To achieve this, the system 
maintains an internal specification of the relation between the different variants of 



ontologies. It allows users to differentiate between ontologies at a conceptual level 
and to export the differences as adaptations or transformations. 

One of the central features of system is the ability to compare ontologies at a 
conceptual level. This is inspired by UNIX diff, but the implementation is quite 
different. Standard diff compares file version at line-level, highlighting the lines that 
textually differ in two versions. The OnToKnowledge system, in contrast, compares 
version of ontologies at a structural level, showing which definitions of ontological 
concepts or properties are changed. 

The comparison function distinguishes between the following types of change: 

• Non-logical change, e.g. in a natural language description. This are changes in the 
label of an concept or property, or in comment inside definitions. 

• Logical definition change. This is a change in the definition of a concept that 
affects its formal semantics. Examples of such changes are alterations of subclass 
statements, or changes in the domain or range of properties. Additions or deletions 
of local property restrictions in a class are also logical changes. The second and 
third change in the Figure 3 (class “Male” and property “hasParent”) are examples 
of such changes. 

• Identifier change. This is the case when a concept or property is given a new 
identifier, i.e. a renaming. 

• Addition of definitions. 

• Deletion of definitions. 

Each type of change is highlighted in a different color, and the actually changed lines 
are printed in boldface. An example of the visual representation of the result of a 
comparison is shown in Figure 3. 



 

Figure 3. The result of a comparison of two ontologies. 
 

The comparison function also allows the user to characterize the conceptual 
implication of the changes.  For the first three types of changes, the user is given the 
option to label them either as “identical” (i.e., the change is an explication change), or 
as “conceptual change”. In the latter case, the user can specify the conceptual relation 
between the two version of the concept. For example, by stating that the property 
“hasParent1.0” is a sub-property of “hasParent2.0”. 

Another function is the possibility to analysis effects of changes. Changes in 
ontologies do not only affect the data and applications that use them, but they can also 
have unintended, unexpected and unforeseeable consequences in the ontology itself. 
[McGuinness et al, 2000]. The system provides some basic support for the analysis of 
these effects. First, on request it can also highlight the places in the ontology where 
conceptually changed concepts or properties are used. For example, if a property 
“hasChild” is changed, it will highlight the definition of the class “Mother”, which 
uses the property “hasChild”. This function can also exploit the transitivity of 
properties to show the propagation of possible changes through the ontology. 

3.3.2 Specification of change 
A change in an ontology constitutes a new version of the ontology. This new version 
defines an orthogonal update relation between the definitions in the original version 
of the ontology and those in the new version. The update relation between two 
versions of a concept, e.g. between class A1.0 and class A2.0, is fundamentally different 



from the relation between two concepts inside an ontology, e.g. between class A and 
class B.  In the latter case, the relation is purely conceptually; however the update 
relations also has meta-information about the change of the concept associated with it. 

We distinguish the following properties that are associated with an update relation: 

• transformation or actual change: a specification of  what has actually changed 
in an ontological definition, specified by a set of change operations (cf. [Banerjee 
et al, 1987], e.g., change of a restriction on a property, addition of a class, removal 
of a property, etc.; 

• conceptual relation: the logical relation between constructs in the two versions of 
the ontology, e.g., specified by equivalence relations, subsumption relations, 
logical rules, or approximations. The conceptual relation between two versions of 
a concept specifies the intention of the ontology engineer that characterised the 
change. 

• descriptive meta-data like date, author, and reason of the update: this describes 
the when, who and why of the change; 

• valid context: a description of the context in which the update is valid. In its 
simplest form, this is the time-period in which the change is valid in the real 
world, conform to valid date in temporal databases [Roddick, 1995] (in this 
terminology, the “date” in the descriptive meta-data is called transaction date). 
More extensive descriptions of the context, in various degrees of formality, are 
also possible. 

Keeping track of all these four aspects of a change relation serves several functions. It 
is possible to perform loss-less transformations of ontologies, by exploiting the set of 
change operations. The conceptual relation gives the ability to re-interpret data and 
other ontologies that use the changed ontology via the new ontology. The meta-data 
and context helps to select versions and validate their applicability. 

4 Organising ontologies 
As the number of different ontologies is increasing, the task of storing, maintaining 
and re-organising them to secure the successful re-use of ontologies is challenging 
(Fensel, 2001). Ontology library systems are an important tool in grouping and re-
organising ontologies for further re-use, integration, maintenance, mapping and 
versioning. Basically it is a library system that offers various functions for managing, 
adapting and standardising groups of ontologies. It should be easily accessible and 
offer efficient support for re-using existing relevant ontologies and standardising them 
based on upper-level ontologies and ontology representation languages (Ding & 
Fensel, 2001).  

4.1 Storage need in OTK 
Sesame8 – developed in the OnToKnowledge project – allows persistent storage of 
RDF data and RDFs information and subsequent querying of the information enabled 
by RQL. Sesame selected a relation database as the storage mechanism, but is  
DBMS-independent via the Repository Abstraction Layer (RAL). The RAL is an 

                                                 
8 http://sesame.aidministrator.nl/ 



interface that offers RDF-specific methods to its clients and translates these methods 
to calls to its specific DBMS. The big advantage of RAL is that it makes it possible to 
implement Sesame on top of a wide variety of repositories without changing any of 
Sesame's other components (Broekstra et al, 2000).  

Sesame provides a basis functionality to store ontologies and their instances and 
provide the querying service as well. However, for large-scale use and ontology re-
use, more advanced functions are needed. A real-world ontology library system must 
support the following (see Figure 4): 

• Open storage, identification and versioning of ontologies;  

• Smooth access to existing ontologies and advanced support in adapting ontologies 
to certain domain and task-specific circumstances (instead of requiring such 
ontologies to be developed from scratch); 

• Fully employing the power of standardisation and providing access to upper-layer 
ontologies and standard representation languages. 
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Figure 4. Aspects of an ontology library system. 

4.2 Functionality of an ontology storage system 
An ontology library system should feature a functional infrastructure to store and 
maintain ontologies, an uncomplicated adapting environment for editing, searching 
and reasoning ontologies, and strong standardization support by providing upper-level 
ontologies and standard ontology representation languages. 

The aspects above can be further specified as the follows:  

4.2.1 Management 
The main purpose of ontologies is to enable knowledge sharing and re-use (Visser, 
van Kralingen & Bench-Capon, 1997). Important functions should include open 
storage, identification, and versioning support. 

• Storage (how to store the ontology): (a) Is the ontology easily accessible (via a 
client/server architecture, Peer-to-Peer, etc.); (b) Are ontologies classified 
according to some existing or home-made categories; and (c) Are ontologies 
stored in modules? (The modularity structure can guarantees proficient ontology 
re-use). 



• Identification (how to uniquely identify an ontology): Each ontology must have a 
unique identifier in the ontology library system. 

• Versioning (how to maintain the changes of ontologies in an ontology library 
system): Versioning is very critical in ensuring the consistency among different 
versions of ontologies. 

4.2.2 Adaptation.  
Ontology library systems should facilitate the task of extending and updating 
ontologies. They should provide user-friendly environments for searching, editing and 
reasoning ontologies. Important aspects include support in finding and modifying 
existing ontologies. 

• Searching (how to search ontology): Does a library system provide certain 
searching facilities, such as keyword-based searching or other advanced 
searching? Does it feature an adequate browsing function? 

• Editing (how to add, delete and edit specific ontologies): How does the system 
support the editing function? Does it support remote and cooperative editing? 

• Reasoning (how to derive consequences from an ontology): How does the system 
support ontology evaluation and verification? Is it possible to derive any query-
answering behaviour? 

4.2.3 Standardisation 
Ontology library systems should support existing or available standards, such as 
standardised ontology representation languages and standardised taxonomies or 
structures of ontologies. 

• Language (the kind of standard ontology language used in the ontology library 
system, for instance, RDFs9, XMLs10 or DAML+OIL11): Does the system only 
support one standard language or other different languages? 

4.2.4 Upper-level ontologies 
It can be useful if the ontology library system is ‘grounded’ in any existing upper-
level ontologies, such as Upper Cyc Ontology, SENSUS, MikroKosmos, the 
PENNMAN Upper Model, and IEEE upper-layer ontology. The upper-level ontology 
captures and models the basic concepts and knowledge that could be re-used in 
creating new ontologies and in organising ontology libraries. 

4.3 Current storage systems 
We have surveyed a number of existing ontology library systems, to analyse the 
current state-of-the art in ontology library systems. The systems that we included in 
our survey are: WebOnto12, Ontolingua 13, DAML Ontology library system, SHOE14, 

                                                 
9 http://www.w3.org/RDF/ 
10 http://www.w3.org/XML/ 
11 http://www.ontoknowledge.org/oil/oilhome.shtml 
12 http://eldora.open.ac.uk:3000/webonto 



Ontology Server from Vrije Universiteit, Brussels, Belgium15, IEEE Standard Upper 
Ontology16, OntoServer17 and ONIONS18. Not all of them real ontology library 
systems, but each of them provides at least some aspects of an library system. Also, 
there are other ontology library systems than those that we included in our 
comparison. We have only included approaches that are publicly available as those 
offer enough detailed information to enable us to evaluate their actual functionality. 
The surveyed results have been related to Sesame to identify the extensions that are 
might be required in the future. The following summarises the features of above 
mentioned ontology library systems. 

4.3.1 Management 
Storage. The ontology library systems in this survey fall into one of two categories: 
(a) those with a client/server-based architecture aimed at enabling remote accessing 
and collaborative editing (WebOnto, Ontolingua, DAML Ontology Library); and (b) 
those that feature web-accessible architecture (SHOE, IEEE SUO). Ontology Server 
features a database-structured architecture. Most ontologies in this survey are 
classified or indexed. They are stored in a modular structured library (or lattice of 
ontologies). WebOnto, Ontolingua and ONIONS all highlight the importance of a 
modular structure in an ontology library system as that structure facilitates the task of 
reorganising ontology library systems and re-using and managing ontologies. 

Identification. The standard way to identify an ontology is by its Unique name or 
Identifier. 

Versioning. Only SHOE supports versioning for handling the dynamic changes of 
ontologies. Versioning is an important aspect of the ontology library system. 
Although many of the systems surveyed do not currently have this function, they 
clearly show that it is needed for future improvements.   

Sesame. It has a client/server-based architecture and supports the web access. But it 
doesn’t support the collaborative editing. It deploys the RAL that makes it possible to 
implement Sesame on top of a wide variety of database-structured repositories 
without changing any of Sesame's other components. The ontologies stored in Sesame 
are not classified and also not in the modular structure either. Sesame will support 
ontology versioning in the near future via the collaboration with the partner in the 
OnToKnowledge project. 

4.3.2 Adaptation 
Searching. Most of these ontology library systems can be accessed through the 
Internet or World Wide Web. They offer simple browsing only. Ontolingua is the 
only one that offers some functional searching features, such as keyword searching 
(wide-card searching), simple query answering, context sensitive searching, etc. As it 
                                                                                                                                            
13 http://www-ksl-svc.stanford.edu:5915/ 
14 http://www.cs.umd.edu/projects/plus/SHOE/ 
15 http://www.starlab.vub.ac.be/research/dogma/OntologyServer.htm 
16 http://suo.ieee.org/refs.html 
17 http://ontoserver.aifb.uni-karlsruhe.de/ 
18 http://saussure.irmkant.rm.cnr.it/onto/ 



is embedded in the database management system, Ontology Server could also provide 
SQL-based searching. 
Editing. Most ontology library systems only provide simple editing functions. 
WebOnto and Ontolingua support collaborative ontology editing (asynchronous and 
synchronous).  

Reasoning. Very simple reasoning functions are provided by WebOnto (rule-based 
reasoning), Ontolingua (ontology testing) and SHOE (ontology revision). 

Sesame. It supports the highly expressive querying of RDFs and RDF data enabled by 
RQL. It has some simple editing functions but not the collaborative editing. The 
reasoning function of Sesame will be developed via the OnToKnowledge Project. 

4.3.3 Standardisation 
Language. These ontology library systems use different languages to store their 
ontologies. In this case, the important function for the future ontology library system 
should support inter-language translating (like Ontolingua) or some standard language 
should be accepted or proposed within the ontology community (such as 
DAML+OIL). 

Upper-level Ontology. Ontolingua has a public version of CYC upper-level ontology 
called HPKB-UPPER-LEVEL with some modification drawn from Pangloss, 
WordNet, and Penma. WebOnto and SHOE doesn’t have the standard upper-level 
ontology but has its own fine-grained structure (e.g., Base Ontology). IEEE SUO tries 
to set up a public standard upper-level ontology. 

Sesame. It supports RDF, RDFs and DAML+OIL. It doesn’t have any upper-level 
ontology. 

4.4 Requirements for storage system in OTK 
In this part, we will summarise important requirements for structuring an ontology 
library system to enhance ontology management, adaptation and standardisation. Thus 
doing, we will formulate a wish-list for an ideal ontology library system.  

4.4.1 Management  
Storage. A client/server-based architecture is critical to an ontology library system’s 
capacity to support collaborative ontology editing. An ontology library system should 
also be web accessible.  

It is necessary to classify ontology in an ontology library system in order to facilitate 
searching, managing and re-using ontology. Some of the ontology classification 
mechanisms available are based on distinguishable features of ontologies. Examples 
include the following:  

• the subject of ontologies (The DAML ontology library system classifies 
ontologies according to the Open Directory Category (www.dmoz.org));  

• the structure of the ontology (The Ontolingua ontology library system has an 
inclusion lattice showing the inclusion relations between different ontologies); 

• inter and intra ontology features (Visser and Bench-Capon (1998) indexed 
ontologies based on the intra and inter ontology features. Examples include 



general, design process, taxonomy, axioms, inference mechanism, application, 
contributions, etc.); 

• the lattice structure (Noy & Hafner (1997) built a lattice of ontologies showing 
the relevance of ontologies);  

• the dimensions of the ontology (Heijst, Schreiber, and Wielinga, (1997) 
indexed ontologies using dimensions (task/method dependency and domain 
dependency) to partition the library into a core library and a peripheral 
library);  

• stratified upper-level ontology (ONIONS used generic, intermediate and 
domain layer to index ontologies),   

• the relations of ontology (Visser and Bench-Capon (1998) indexed ontology 
based on defined relations, such as the subset/superset relation, extension 
relation, restriction, and mapping relation),   

• the components of ontology (Visser and Bench-Capon (1998) also mentioned 
the indexing of ontology based on the component of ontologies, such as 
domain partitioning (partition domain in logical units), alternative domain 
views (polymorphic refinement), abstraction (abstract and detailed 
ontologies), primary ontologies versus secondary ontologies, terminological, 
information and knowledge modelling ontologies). 

Modular organisation in the ontology library system organises units into modules. 
This serves to maximise cohesion within modules and minimise interaction between 
modules (McGuinness, Fikes, Rice, & Wilder, 2000). Most of the ontology library 
systems that aim to facilitate ontology re-use, ontology mapping and integration have 
adopted this structure. ONIONS also highlights the stratified design of an ontology 
library system. Different naming policies assist the ontology library system to achieve 
the modular organisation or stratified storage of ontologies (McGuinness, Fikes, Rice, 
& Wilder, 2000). The disjointed partitioning of classes can facilitate modularity, 
assembling, integrating and consisting checking of ontologies. If, for instance, a 
certain class, such as ‘people,’ were disjointed from another class,  say ‘countries’, 
then consistency checks could be carried out much sooner and faster. Thus, the 
partition modification has proven to be extremely valuable for editing purposes. 
Linking class names with their own contexts or using name space for differentiating 
them can serve to prevent violation within individual ontologies. As ontologies 
continue to grow, so too does the importance of systematic and consistent naming and 
organisational rules.  

Identification. Unique ontology URL, Identifier and name are used as the identifier 
for ontologies in the ontology library systems. 
Versioning. A version control mechanism is very important to an ontology library 
system. Unfortunately, most existing ontology library systems cannot support it, 
except for SHOE. 

4.4.2 Adaptation 
Searching & Editing. An ontology library system should feature a visualised 
browsing environment, using hyperlinks or cross-references to closely related 
information. It should support collaborative editing and offer advanced searching 



features by adopting various existing information retrieval techniques, database 
searching features, or AI heuristic techniques. Ontology library systems could also 
monitor user profiles based on access patterns in order to personalise the view of 
ontologies (Domingue & Motta, 1999). 

Reasoning. A simple reasoning function should be included in order to facilitate 
ontology creation, ontology mapping and integration. 

4.4.3 Standardisation 
Language. Syntactically, an ontology representation language should be standardised 
or inter- or intra- ontology language translation should be supported. Semantically, an 
ontology library system should feature the common vocabulary (or faceted 
taxonomy). At any rate, it should eliminate the implicitness and misunderstanding of 
terms in different ontologies (due to synonyms, homonyms, etc.) for most generic 
classes. Preferably, an ontology library system should also support compatibility with 
or mapping between multiple controlled vocabularies from different domains. This 
would not only serve to guarantee flexibility in expressing an ontology semantically, 
but also to liquidate implicitness. The structures of these common vocabularies or 
multiple controlled vocabularies must be faceted, or modulated so as to facilitate the 
re-use, mapping and integration of ontologies (McGuinness, 2000). These 
vocabularies can help in simple synonym matching, sibling analysis, and disjoint 
partition checking.  

Upper-level Ontology. Standard upper-level ontology is important for better 
organisation of ontology library systems (Ontolingua, IEEE SUO).  

4.4.4 Others 
Ontology scalability. Ontology library systems should also consider increasing the 
scale of ontologies. 
Maintaining facility. Ontology library systems should also provide some 
maintenance features, such as consistency checking, diagnostic testing, support for 
changes, and adaptation of ontologies for different applications. 

Explicit documentation. Each ontology in an ontology library system should be 
extensively documented. The documentation should include such information as how 
the ontology was constructed, how to make extensions and what the ontology’s 
naming policy, organisational principles and functions are. Such explicit documents 
about the ontologies themselves will pave the way for efficient ontology management 
and re-use. 

5 Summary 
In this chapter, we looked at various aspects of ontology management. Ontology 
management is the whole set of methods, methodologies, and techniques that is 
necessary to efficiently use multiple variants of ontologies from possibly different 
sources for different tasks. 

Alignment is an important aspect, because in many real-world scenario’s, there are 
several ontologies of a domain used for a specific task. Each of those domain 
ontologies might capture specific aspects of knowledge and might use different 
terminology. Special mapping ontologies must be created to link different 



terminologies and modelling styles used in these domain specific ontologies. We 
described a meta-ontology that can be used to creating such bridges between 
separated pieces of knowledge. These bridges along with domain ontologies can then 
used to perform cross-ontology tasks. 

We also discussed the fact ontologies are not static, but evolve over time. Domain 
changes, adaptations to different tasks, or changes in the conceptualisation require 
modifications of the ontology. The evolution of ontologies causes interoperability 
problems which might hamper their effective reuse. Ontology comparison techniques 
can help the ontology engineer to find changes between ontologies and to characterise 
them conceptually. When the conceptual relation between the versions, the 
transformations between them, as well as the meta-data of the change is maintained, it 
is possible to support both loss-less transformations between version and re-
interpretation of data and knowledge under different versions. 

Ontology library systems are systems that support the ontology management task in 
various aspects. We have discussed the functions of a ontology library system, we 
surveyed exiting systems and finally came up with a wish-list for the ideal system. 

References 
Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. F. (1987). Semantics and 
Implementation of Schema Evolution in Object-Oriented Databases. SIGMOD Record 
(Proc. Conf. on Management of Data), 16(3):311–322, May 1987. 

Broekstra, J., Fluit, C., and van Harmelen, F. (2000), "The State of the Art on 
Representation and Query Languages for Semistructured Data", IST-199-10132 On-
To-Knowledge Project, Deliverable 8, 2000. http://www.ontoknowledge.org/del.shtml 

Clark, J. (1999). XSL Transformations (XSL-T),  W3C Recommendation, 1999. 
[http://www.w3.org/TR/xslt/] 

Corcho, O. and Gomez-Perez, A. (2000) ‘A roadmap to ontology specification 
languages’, in Knowledge Engineering and Knowledge Management; Methods, 
Models and Tools, Proceedings of the 12th International Conference EKAW 2000, 
eds., Rose Dieng and Olivier Corby, LNCS 1937, pp. 80–96, Juan-les-Pins, France, 
October 2–6, 2000.  

Ding, Y. and Fensel, D. (2001). Ontology Library Systems: The key for successful 
Ontology Reuse. The first Semantic web working symposium (SWWS1), Stanford, 
USA, July 29th-August 1st, 2001. 

Domingue, J. & Motta, E. (1999). A knowledge-based news server supporting 
ontology-driven story enrichment and knowledge retrieval. In D. Fensel and R. Studer 
(editors), Proceedings of the 11th European Workshop on Knowledge Acquisition, 
Modeling, and Management (EKAW '99), LNAI 1621, Springer-Verlag, 1999. 

Fensel, D. (2001). Ontologies: A Silver Bullet for Knowledge Management and 
Electronic Commerce. Springer, 2001. 

Gruber, T. R. (1993). A translation approach to portable ontology specifications. 
Knowledge Acquisition, 5(2), 1993. 

Heijst, G. van Schreiber, A.T. and Wielinga, B. J. (1997). Using explicit ontologies in 
KBS development. Int. Journal of Human-Computer Studies 45 183-292. 



Klein, M. (2001). ‘Combining and relating ontologies: an analysis of problems and 
solutions’, in Workshop on Ontologies and Information Sharing, IJCAI’01, eds., 
Asuncion Gomez-Perez, Michael Gruninger, Heiner Stuckenschmidt, and Michael 
Uschold, Seattle, USA, August 4–5, 2001. 

Klein, M. and Fensel, D. (2001). Ontology versioning for the Semantic Web. In 
Proceedings of the International Semantic Web Working Symposium (SWWS), 
Stanford University, California, USA, July 30 – Aug. 1, 2001. 

Lassila, O. and Swick, R., (1999). Resource Description Framework (RDF) Model 
and Syntax Specification, W3C Recommendation, 1999. 
[http://www.w3.org/TR/REC-rdf-syntax/] 

Lerner, B.S. (2000). A Model for Compound Type Changes Encountered in Schema 
Evolution. ACM Transactions on Database Systems. 25(1): p. 83-127, 2000. 

McGuinness, D.L. (2000). Conceptual modelling for distributed ontology 
environment. In Proceedings of the Eighth International Conference on Conceptual 
Structures Logical, Linguistic, and Computational Issues (ICCS2000), Darmstadt, 
Germany, August 14-18, 2000. 

McGuinness,. D.L Fikes, R. Rice, J. & Wilder, S.(2000). An environment for merging 
and testing large ontologies. Proceedings of the Seventh International Conference on 
Principles of Knowledge Representation and Reasoning (KR2000). Breckenridge, 
Colorado, April 12-15, 2000. 

Mitra, P., Wiederhold, G., and Kersten, M. (2000). A Graph-Oriented Model for 
Articulation of Ontology Interdependencies, In: Zaniolo, C., Lockemann, P., Scholl, 
M., and Grust, T. (eds.), Advances in Database Technology - EDBT 2000, 7th 
International Conference on Extending Database Technology, Springer-Verlag, LNCS  
1777, Konstanz, Germany, March 27-31, 2000, pp.  86-100.  

Noy, F. N. & Hafner, C.D. (1997). The state of the art in ontology design: A survey 
and comparative review. AI Magazine 4 53-74. 

Omelayenko, B. and Fensel, D. (2001). A Two-Layered Integration Approach for 
Product Information in B2B E-commerce, In: Madria, K. and Pernul, G. (eds.), 
Proceedings of the Second International Conference on Electronic Commerce and 
Web Technologies (EC WEB-2001), Springer-Verlag, LNCS 2115, Munich, 
Germany, September 4-6, 2001, pp. 226-239. [http://www.cs.vu.nl/~borys/papers/EC-
Web01.pdf] 

Roddick, J.F. (1995). A survey of schema versioning issues for database systems. 
Information and Software Technology. 37(7): p. 383-393, 1995. 

Uschold, M., Healy, M., Williamson, K., Clark, P. and Woods, S. (1998) ‘Ontology 
reuse and application’, in Formal Ontology in Information Systems (FOIS’98), ed., N. 
Guarino, Treno, Italy, (June 6-8, 1998). IOS Press, Amsterdam. 

Ventrone, V. and Heiler, S. (1991). Semantic heterogeneity as a result of domain 
evolution. SIGMOD Record (ACM Special Interest Group on Management of Data). 
20(4): p. 16-20, 1991. 

Visser, P.R.S. and Bench-Capon, T.J.M (1998). A Comparison of Four Ontologies for 
the Design of Legal Knowledge Systems. Artificial Intelligence and Law 6 27-57. 



Visser, P.R.S., van Kralingen, R.W. & Bench-Capon, T.J.M. (1997a). A method for 
the development of legal knowledge systems. Proceedings of the Sixth International 
Conference on Artificial Intelligence and Law (ICAIL’97), Melbourne, Australia. 
1997. 

Visser, P. R. S., Jones, D. M., Bench-Capon,  T. J. M., and Shave, M. J. R. (1997b). 
An analysis of ontological mismatches: Heterogeneity versus interoperability. In 
AAAI 1997 Spring Symposium on Ontological Engineering, Stanford, USA, 1997. 


