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Abstract 
Studying scientific collaboration using coauthorship networks has attracted much attention in recent 
years. How and in what context two authors collaborate remain among the major. Previous studies, 
however, have focused on either exploring the global topology of coauthorship networks (macro 
perspective) or ranking the impact of individual authors (micro perspective). Neither of them has 
provided information on the context of the collaboration between two specific authors, which may 
potentially imply rich socioeconomic, disciplinary, and institutional information on collaboration. 
Different from the macro-perspective and micro-perspective, this paper proposes a novel method (meso 
perspective) to analyze scientific collaboration, in which a contextual subgraph is extracted as the unit of 
analysis. A contextual subgraph is defined as a small subgraph of a large-scale coauthorship network that 
captures relationship and context between two coauthors. This method is applied to the field of library 
and information science (LIS). Topological properties of all the subgraphs in four time spans are 
investigated, including size, average degree, clustering coefficient, and network centralization. Results 
show that contextual subgprahs capture useful contextual information on two authors’ collaboration.  

Introduction 
The trend of scientific collaboration has become more and more prominent within and across different 
disciplines in the past decades. The idea that scientific research is moving from a personal, disciplinary-
based, and location-restricted practice towards a collective, problem-oriented and geographical-
distributed activity is well-accepted nowadays (Sonnenwald, 2007). Scientific collaboration advances 
professional development and increases the integration of knowledge. Access to expertise, facility, and 
connections from multiple sides is shared in scientific collaboration, providing a stronger whole than any 
individual side. In particular, it also enhances the visibility of aspiring young scientists (Beaver & Rosen, 
1978, 1979).  Therefore, in recent years, numerous institutional and governmental initiatives are intended 
to encourage collaboration among scientists, institutions, and countries. Coauthorship is an explicit and 
critical product of scientific collaboration, and has been used extensively to explore the patterns and 
potential of scientific collaboration and the impact of individual scholars. Many aspects of scientific 
collaboration, including the investigation of global topology of coauthorship networks or ranking the 
impact of individual authors, can be tracked by analyzing the coauthorship network. However, some 
questions, such as in what context do two specific coauthors actually collaborate and why, are still 
remained unanswered. 



Previous studies of coauthorship networks can be generally categorized into two directions. One focuses 
on the global structure and evolution of coauthorship networks (a macro perspective) (Barabasi, et al., 
2002; Moody, 2004; Newman, 2001a, 2001b; Leydesdorff & Wagner, 2008). The other emphasizes 
various indicators of the impact/prestige of individual researchers (a micro perspective). For example, 
different types of centrality and weighted PageRank are performed based on coauthorship networks 
(Borner, et al., 2005; Liu, et al., 2005; Yan & Ding, 2009; Yan et al., 2010). Although Integration of 
coauthorship networks on institutional and international levels can noticeably reflect the language and 
geographical factor in scientific collaboration, yet it loses some information and makes the personal-level 
factors invisible. They haven’t shed light on how to characterize and contextualize the collaborative 
relationship of a coauthor pair.  

In large-scale coauthorship networks, searching for the relationship between two specific coauthors (i.e., 
two people who have co-published a paper, which is referred to as “a coauthor pair” in the rest of the 
paper), usually yields the edge between them weighted by the number of coauthored papers (Figure 1 (a)). 
However, such edges disregard a large amount of contextual information between the co-author pair. 
First, a direct concern is that a single edge in coauthorship networks omits important information in the 
case of more than two researchers collaborating on one paper (i.e., multi-authorship). Second, a single 
edge in coauthorship networks cannot display the broad environment of collaboration, such as 
disciplinary, socioeconomic, institutional, and geographical factors (Sonnenwald, 2007). Instead, relevant 
authors, who are directly or indirectly involved in the collaboration of the coauthor pair, can imply rich 
contextual information. The subgraph formed by these relevant authors and the coauthor pair is referred to 
as the contextual subgraph characterized by the co-author pair (a meso perspective). Table 1 summarizes 
the macro, micro and meso perspectives of coauthorship networks. 

Table 1 A summary of macro, micro and meso level perspectives 

 Measure Characteristics 
Macro-level size, largest component, geodesic distance, 

degree distribution, clustering coefficient, k-
core, and so forth 

detecting the global pattern of scientific 
collaboration 

Micro-level degree centrality, closeness centrality, 
betweeness centrality, eigenvector 
centrality, and PageRank 

identifying most collective authors and 
ranking impact of individual authors 

Meso-level number, size, and other topological 
properties of contextual subgraphs 

characterizing and contextualizing 
collaborative relationships between 
coauthor pairs 

 



In order to address those questions, this paper defines a contextual subgraph that captures the link and 
context information for a coauthor pair. More specifically, the research questions addressed in this paper 
is “in what context do two specific coauthors actually collaborate and why”. Here we provide an example 
of contextual subgraphs. As shown in Figure 1, assume that people want to find out how and in what 
context M. Thelwall and D. Wilkinson have collaborated. By looking at the edge between the two 
scientists (Figure 1a), people can only know that they have coauthored a certain number of papers. By 
contrast, the contextual subgraph (Figure 1b) shows seven more researchers involved in their 
collaboration. Through examining those researchers’ affiliations, we found that M. Thelwall and D. 
Wilkinson are both faculty members of Statistical Cybermetrics Research Group at University of 
Wolverhampton, as are R. Binns, L. Price, and P. Musgrove.  In addition, G. Harries, X.M. Li, and T. 
Page-Kennedy are faculty members in the same department with M. Thelwall and D. Wilkinson. Many 
papers coauthored by M. Thelwall and D. Wilkinson also involved those other nodes in the subgraph as 
coauthors (multiple authors). Contextual information supplied by the subgraph is more informative in 
helping us to understand these collaborations.  

 
Figure 1 (a) The edge between M. Thelwall and D. Wilkinson in coauthorship network; and 1 (b) the 

contextual subgraph of M. Thelwall and D. Wilkinson 
 

Taking contextual graph as the unit of analysis, statistical features of the topological properties of 
subgraphs can be investigated and correlated to other aspects of coauthorship (demographics, journal, 
institution, nations, mentorship, etc.) to uncover underlying mechanisms of scientific collaboration.  In 
this paper, the method is applied to the coauthorship networks in LIS field. In addition to diachronically 
analyzing the topological properties of thousands of coauthor subgraphs, this paper also explores how 
topological properties of contextual subgraphs correlate with productivities and citations of coauthor pairs. 
This paper is organized as follows: section 2 states related works; section 3 elaborates on the 
methodology and the sample data; section 4 presents the results; and section 5 concludes the study. 

Related Work 
Before 2000, studies of coauthorship networks focused on the validity of using coauthorship data to 
analyze research collaboration and how coauthorship can be retrieved, refined, and analyzed (Lukkonen 
et al., 1992; Kretschmer, 1994; Persson & Beckmann, 1995; Melin & Persson, 1996). The coauthorship 
networks in these studies are usually of relatively small size. Beginning in 2000, several researchers 

a) b) 



started to construct large-scale networks using coauthorship data representing research collaborations in 
various disciplines (Newman, 2001a, 2001b, 2001d, 2004; Barabási et al., 2002; Newman, 2004; Moody, 
2004). Topological properties of networks that have been much discussed include graph size, largest 
components, geodesic distance, degree distribution, clustering coefficient, centrality, and k-core. While 
Newman (2001a, 2001b) performed analysis on a static network at a specific time point, Barabási et al. 
(2002) presented the evolution of topological properties of coauthorship networks in mathematics and 
neuroscience for an eight-year period (1991-98) and built a model to simulate the structural mechanisms 
that govern the evolution. Moody (2004) explored how variations of the global network topology in 
sociology collaboration networks have affected the field’s research practice in the last 30 years. 

Another direction of studies aimed to construct various indicators of the impact of individual 
authors/institutions/countries through manipulation of coauthorship network properties from a micro 
perspective (Borner et al., 2005; Liu et al., 2005; Yan & Ding, 2009). Assorted measurements of 
centrality and adapted models of PageRank are two popular topics of such studies. Borner et al. (2005) 
proposed a novel local, author-centered measure based on the entropy contribution of a single author’s 
impact across all of its coauthorship relations. Yan and Ding (2009) compared authors’ impact ranked by 
PageRank and various centrality measures over a time span of 20 years and verified their usability. Liu et 
al. (2005) proposed a weighted PageRank algorithm which takes the number of papers coauthored into 
consideration. Few of those studies, however, have analyzed the relationship and context between a 
coauthor pair from a meso perspective. As proposed in this paper, a subgraph that captures important 
connections between two-coauthors can fill this gap. 

Meanwhile, extensive literatures have been devoted to study the internal and external factors that affect 
scientific collaboration. They have emphasized different aspects of scientific collaboration, including: (1) 
Cognitive/disciplinary factor; for example, the emerging interdisciplinary areas require collaboration, etc. 
(Katz & Martin, 1997; Beaver, 2001; Hara, Solomon, Kim, & Sonnenwald, 2003); (2) Geographic factor; 
for example, researchers who are geographically closer are more likely to collaborate (Katz, 1994; 
Luukkonen et al., 1992;Schubert & Braun, 1990); (3) Organizational factor; for example, leadership and 
management of scientific collaboration also play a noticeable role (Finholt & Olson, 1997); (4) Political 
factor; for example, governments are keen to encourage the level of participation in scientific 
collaboration (Clarke, 1967; Smith, 1958); (5) Socioeconomic factor (Maglaughlin & Sonnenwald, 2005); 
(6) Resource accessibility (Cohen, 2000); and (7) Social networks and personal factors; prestige and 
productivity of researchers also impact their participation in scientific collaboration (Egghe, 2008; 
Glänzel, 2000; Glänzel & Schubert, 2001). However, most of the previous studies have either analyzed 
various possible factors theoretically and qualitatively, or verified only an individual factor with 
quantitative evidences. There lacks a method that can be used to quantitatively analyze all possible factors 
on a unified platform. In fact, all those factors that affect the scientific collaboration are buried in the 
background information (e.g., nationality, affiliation, position, expertise, prestige, etc.) of coauthors in the 
identified contextual subgraph. 

Another group of related work addresses graph mining. Subgraph extraction and matching is an emerging 
topic in the area of graph mining. Estrada et al. (2005) defined a novel centrality measure, referred to as 
subgraph centrality, which characterizes nodes in a network according to the set of subgraphs formed by 
random walks starting and ending at the node (i.e., closed walk). The influence of closed walks on the 
centrality decreases as the length of the walk increases. Their experiments showed that subgraph 



centrality is more discriminative for the nodes of a network than degree, betweenness, closeness, or 
eigenvector centrality. Faloutsos et al. (2004) extracted a subgraph that best captures the relationship 
between two nodes based on a large graph, using an electricity circuit analogue. Their algorithm was 
adapted and applied by Ramakrishnan et al. (2005) to multi-relational graphs. Another study utilized 
subgraphs in measuring proximity between nodes in graphs (Koren et al., 2006). Work of Faloutsos et al. 
(2004) extended the definition of subgraph to identifying the most important set of intermediate nodes 
among more than two predefined nodes (Tong & Faloutsos, 2006). While these studies emphasized 
similarity between indirectly connected pair of nodes, this paper concentrates on contextualizing pairs of 
authors who are directly connected in a coauthorship network. On the other hand, those studies address 
the problem of the subgraph from an algorithm perspective, while this study tailors the problem according 
to specific features of coauthorship networks and shows rich possibilities of exploring scientific 
collaboration using contextual subgraphs proposed in this paper. 

Methodology 
The contextual subgraph between a coauthor pair is defined as a subgraph of the large coauthorship graph 
that is formed by paths within a certain length between two directly connected authors (i.e., a coauthor 
pair). A contextual subgraph is thus characterized or defined exclusively by a coauthor pair. The 
contextual subgraph of a coauthor is created through two steps: 1) identify all the paths within a certain 
length of the coauthor pair; and 2) merge those paths into a graph.  

Algorithm 
A modified heap-based Dijkstra path-finding algorithm is used to efficiently identify the paths within a 
certain length between two specific nodes in a large-scale graph (Tang et al., 2008). Length denotes the 
number of jumps needed to reach from one node to another in the undirected coauthorship network. 
Identified paths are further merged to form the contextual subgraph. More specifically, the approach 
contains two steps: 

1. Enumeration of all paths within a certain length (predefined threshold): a heap-based Dijkstra 
algorithm with complexity of O(nlogn) (n is the size of the original graph) and a depth-first 
search are used to locate all the paths within a certain length between two specific nodes. 
Intuitively, search processes begin at the starting node and ending note at the same time. The 
process systematically explores all the neighboring nodes in sequence, where for each of those 
neighboring nodes, it visits their unexplored neighbor nodes and records/updates all its stretching-
out paths. One path is identified when the two processes visit the same node. Thus the path is 
recognized by combining the recorded paths between the staring node and the coincidental node, 
and between the coincidental node and the ending node (see Figure 2). In Figure 2, supposing the 
starting node is 1 and the ending node is 26: 
• Breadth first search (BFS)explores the nearest neighbor of node 1 and reaches node 3, 4, 6, 7, 

10 (Figure 2-b); 
• Meanwhile, another BFS similarly explores the nearest neighbor of node 26 and it reaches 

node 19, 21, 23, 24, 25  (Figure 2 c); 
• The former BFS further explore all the nearest neighbors of node 3, 4, 6, 7, 10, and reaches 2, 

5, 8, 9, 11, 14, 18 (Figure 2 d); 



• Meanwhile, the latter BFS explore all the nearest neighbors of node 19, 21, 22, 23, 24, 25, 
and it reaches 15, 16, 18, 22 (Figure 2 e); and 

• A node (i.e., node 18) is visited by both BFS processes; the algorithm ends. The shortest path 
between node 1 and node 26 is 1 – 10 – 18 – 21 – 26 (Figure 2 f). 
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Figure 2 Finding paths within a certain length between two nodes 
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2. Construction of contextual subgraphs: based on the set of paths identified in Step 1, the 
contextual subgraph is formed in the way that the same nodes in different paths are recognized 
and merged as one, and that all edges are reserved and kept their association with nodes (see 
Figure 3). 

 

 

Figure 3 Merging the set of paths into a contextual subgraph. 

Data 
This proposed methodology is applied to the field of LIS. 50,920 articles written by 42,991 researchers 
published during 1955-2009 in journals categorized into “INFORMATION SCIENCE & LIBRARY 
SCIENCE” were downloaded from ISI. In order to explore the dynamics of contextual subgraphs over 
time, the data were further divided to four accumulative time spans of 1955-1980, 1955-1990, 1955-2000, 
and 1955-2009. Table 2 shows the descriptive statistics of the data in the four time spans. Based on this 
dataset, a coauthorship network was built. Each author is a node, and a linkage is created if the two 
authors have coauthored at least two papers.1

Table 2 Overview of the LIS dataset 

 Table 3 shows the overview of coauthorship network of LIS 
in the four time spans. Subgraphs for all the possible pairs of coauthors were extracted and investigated 
through topological properties, including size, average degree, clustering coefficient, network 
centralization, as well as the correlations between any two of them.  

 1955-1980 1955-1990 1955-2000 1955-2009,9 
Number of papers 10,318 17,540 32,314 50,920 
Number of papers 
with more than one author 

1,309 3,255 8,379 17,936 

Number of authors* 2,482 5,641 14,492 30,503 
*Only authors who have collaborated with at least one other author are included. 

                                                      

1 We didn’t consider homonyms in authors’ names. There are two reasons. First, there is no standard way of 
disambiguating authors’ names. Various ways suggested by literatures don’t give very satisfactory performance, and 
they either need more information or are set in a different context. Second, as shown by previous bibliometrics study 
(Barabasi et al., 2002; Moddy, 2004), name disambiguation doesn’t make a big difference in the results in this 
context. Barabasi et al. (2002) argued that for coauthorship networks, author disambiguation may not be critical. 
Moody (2004) found no significant difference in the results in coauthorship networks using the methods for name 
disambiguation. 

Merge 
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Table 3 Overview of LIS coauthorship network* 

 1955-1980 1955-1990 1955-2000 1955-2009,9 
Number of nodes** 174 534 1,843 4,405 
Number of edges 114 375 1,684 4,793 
*All components are all included.  
**Only authors who have collaborated with at least one other author no less than two times are included. 

 

The maximum length of paths that is allowed to be included in contextual subgraphs is set at six for two 
reasons. First, for more than 80% of all the pairs of coauthors in 2009, paths within length six cover all 
the possible paths between them. Second, an intuitive explanation of threhold six can be informed by the 
theory of six degrees of separation (Milgram, 1967). The coauthorship network is usually seen as a social 
network, because coauthoring a paper often requires intensive communication of ideas and exchange of 
expertise. Moreover, six degrees of separation in coauthorship networks is also supported by previous 
studies. For example, Newman (2001d) found that the typical distance between any two randomly 
selected scientists is approximately six links. 

Results and Analysis 
In this section, a statistical overview of topological properties of all the contextual subgraphs in four time 
spans is presented along with analyses of typical cases. Furthermore, correlations between topological 
properties of a subgraph and the productivity, as well as between those properties and citations of the 
coauthor pair, are calculated and analyzed. Table 4 shows the number of contextual subgraphs in each 
time span. The numbers of contextual subgraphs in each time span are consistent with the number edges 
shown in Table 3, since each directly connected pair of authors in coauthorship network corresponds to a 
contextual subgraph. 

Table 4 Total number of contextual subgraphs in four time spans 

Year 1955-1980 1955-1990 1955-2000 1955-2009,9 
Total number of contextual subgraphs 114 375 1,684 4,793 
Number of contextual subgraphs with size 
larger than two 

38 
(33.33%) 

133 
(35.47%) 

877 
(52.08%) 

3,001 
(62.61%) 

 

As shown in Table 4, the percentage of subgraphs with size larger than two increases over time, 
indicating that collaboration between two authors tends to involves more and more other researchers. This 
fact reflects the global trend of broadened collaboration. More importantly, it gives prominence to 
contextual subgraphs in representing the actual practices of modern science, because subgraphs stretch 
out from the single edge between a coauthor pair and capture a broader range of the actual collaboration 
relationship. 

Topological properties of subgraphs over time 
Topological properties, including graph size, average degree, clustering coefficient, and network 
centralization, are investigated for all the existing contextual subgraphs in the four time spans.  
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Size of contextual subgraphs 
Size is the basic topological properties of a network. Figure 4 shows the probability distribution of the 
subgraphs’ number of nodes in different time spans. A general pattern of power law phenomena can be 
discerned in Figure 4 (power law regression in 1955-2009 gives an exponent 2.059 where R² equals 
0.6982). This fact indicates that a small portion of researchers tend to collaborate in the context of large 
groups of people (e.g., 30), while a dominant majority of them work with small groups (e.g., less than 
five). Meanwhile, the size of the largest contextual subgraph in each time span increases from four in 
1955-1980 to 35 in 1955-2009.  

 

Figure 4 Probability distribution of size of contextual subgraphs in four time spans 

Figure 5 shows one of the largest contextual subgraphs (31 nodes) in 1955-2009, which is characterized 
by the coauthor pair G. J. Kuperman and D. W. Bates. Both are specialized in health information 
technology, especially the use of computer systems to improve patient care with particular respect to 
clinical decision support. They are respectively affiliated with multiple institutions, including universities, 
research centers, hospitals and companies.2 3 For example, L. Leape, R. Kaushal, and D. W. Bates are all 
principal investigators in the Center of Excellence for Patient Safety Research and Practice (CEPSRP)4, 
while D.L. Seger, J. Fiskio, A. C. Seger, A. Wright and D. W. Bates are members of the Clinical and 
Quality Analysis group at Partners HealthCare System, Inc. Moreover, institutional-level collaboration is 
also embedded in this contextual subgraph. For example, the Harvard School of Public Health (one of 
Bates’s affiliations) is listed as a collaborating institution of CEPSRP 5

                                                      

2 See also 

. This contextual subgraph is 
defined by two prestigious researchers affiliated with multiple institutions, which probably explain why it 
becomes one of the largest subgraphs. 

http://www.coesafety.bwh.harvard.edu/linkPages/peoplePages/core_heads/dwb.htm. 
3 See also http://people.dbmi.columbia.edu/~gjk9001/. 
4 See also http://www.coesafety.bwh.harvard.edu/linkPages/peoplePages/InvestigatorsGenlPage.htm.  
5 See also http://www.coesafety.bwh.harvard.edu/linkPages/aboutPages/collaborating_insts.htm.  
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Figure 5 One of the largest subgraphs between D. W. Bates and G. J. Kuperman in 1955-2009 

As indicated above, compared with saying that D.W. Bates and G.J. Kuperman coauthored more than ten 
papers, by examining the authors showed in the proposed contextual subgraph between them, we obtain 
enriched contextual information, much of which is essential for exploring the patterns of collaboration. 

Average degree of contextual subgraphs 
Average degree evaluates the connectivity of the subgraph: a higher value suggests that more mediated 
nodes are shared by different paths. Figure 6 shows the probability distribution of the average degree of 
subgraphs in the four time spans, which also presents a power law shape in all time spans (power law 
regression in 1955-2009 gives an exponent as 1.363 where R² equals 0.9143). In most contextual 
subgraphs, an author is connected with less than three other authors on average, while in only a small 
number of subgraphs, an author is connected with more than 10 other authors on average. Similar to 
graph size, the highest value of average degree of contextual subgraphs also increases prominently over 
four time spans. The portion of contextual subgraphs with degree larger than one also increases over time, 
indicating that authors tend to collaborate with more authors across years. This phenomenon reflects the 
international trend of far-ranging collaborations in modern science (Sonnenwald, 2007). 
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Figure 6 Frequency distribution of average degree of subgraphs 2009, 9 

 

Figure 7 One of the subgraphs with the largest average degree in 2009, 9 

Figure 7 shows the largest contextual subgraph with average degree equaling 12. This subgraph is a 
complete graph, in which every node is connected with every other node. The forming of this clique is 
due to the fact that these 13 authors worked as a research team on a project 
(http://moxxi.mcgill.ca/moxxihome.html) and published two papers (Tambly et al., 2006; Tamblyn et al., 
2008) with all of them listed as authors. This case demonstrates that contextual subgraphs can effectively 
capture multi-authorships (a.k.a., hyperauthorships (Cronin, 2001)); underlying this multi-authorship are 
possibly institutional (same affiliations) and economical (the same funded project) factors.  

Clustering Coefficient 
The clustering coefficient tells how well connected the neighborhood of one node is. If the neighboring 
node is fully connected, the clustering coefficient is 1, and a value close to 0 means that there are hardly 
any connections in the neighborhood. More formally, local clustering coefficient of a node (Wasserman & 
Faust, 1994) can be represented as: 
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𝐶𝐶𝑛𝑜𝑑𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠

. 

The clustering coefficient of a subgraph is obtained by averaging the local clustering coefficient of all 
nodes. Figure 8 presents the probability distribution of the clustering coefficient of contextual subgraphs 
in the four time spans. As presented in Figure 8, a substantial portion of contextual subgraphs has a 
clustering coefficient no less than 0.8, reflecting the strong tendency of collaboration between neighbors 
of the same author reported by other previous studies (Newman, 2001b; Barabasi, et al., 2002; Moody, 
2004). Meanwhile, this phenomenon also reveals well-formed delicate clusters around a majority of 
coauthor pairs, which cannot be gleaned without proposed contextual subgraphs. In addition, the portion 
of contextual subgraphs with clustering coefficient equaling 1 decreases in the latter three time spans. 
This can be explained by the trend of global trend of researches in scientific collaborations, which might 
weaken the tendency of collaboration between coauthors of the same author. 

 

Figure 8 probability distribution of clustering coefficient of subgraphs 2009, 9 (only subgraphs with size 
larger than two are included). 

 
Figure 9 The subgraph between W. Glänzel and B. Thijs in 1955-2009 
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Figure 9 shows the subgraph with the lowest clustering coefficient of all subgraphs whose sizes are larger 
than four, which captures the context of collaborations between W. Glänzel and B. Thijs. Examination of 
these authors’ affiliations shows that the nine affiliated authors are associated with institutions located in 
Hungary, Belgium, Netherlands, England, Finland, and Brazil, respectively or jointly. This broad 
international background probably weakens the tendency of collaboration between neighbors of the same 
author. 

Network Centralization 
Network Centralization assesses the global centrality of the network. Network centralization is defined as 
the ratio of variations of degree divided by the largest possible degree variations with the same size. The 
possible largest degree variation of a simple graph occurs in a strict star-structure. More formally, 
network centralization (Wasserman & Faust, 1994) can be represented by the following formula:  

𝐶𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑖𝑡𝑜𝑛𝑠
𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒

. 

Figure 10 shows the probability distribution of network centralization values of these subgraphs. A 
dominant proportion of the subgraphs takes a 0 in network centralization, indicating that a substantial 
formation of contextual subgraphs could be attributed to multiple-authorship. Meanwhile, the portion of 
subgraphs take a value greater than 0 in network centralization increases in the latter three time spans and 
subgraphs with network centralization larger than 0.5 emerge in 1995-2009, revealing that more star-like 
structured contextual subgraphs tend to be popularized over time (subgraphs of network centralization 
larger than 0.5 are referred to as a star-like structure). Various factors may contribute to the increasingly 
obvious star-like structure. For example, applying to research funding usually requires one or more 
principal investigators (PI) who are usually prestigious scholars in the area. The standing of PIs would 
have much indirect impact on facilities, publications, research groups, and so forth, strengthening the 
preferential attachment (Newman, 2001c).  
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Figure 10 probability distribution of network centralization of subgraphs in four time periods 

 

Figure 11 Frequency distribution network centralization of subgraphs 2009, 9 between D. Nicholas and           
C. Tenopir (network centralization = 0.71324) 

Figure 11 shows one of subgraphs with the largest network centralization value, indicating a dominant 
star-like structure. This subgraph is defined by D. Nicholas and C. Tenopir. D. Nicholas is Director of the 
Centre for Information Behavior and the Evaluation of Research (CIBER) and Professor/Director of the 
School of Library of University College London; P. Huntingtona and H.R. Jamali are senior researchers 
and founder members of CIBER, and most of the remaining authors are also affiliated with CIBER.  

Correlations between topological properties 
In addition to the topological properties of subgraphs discussed in preceding sections, correlations 
between them are also presented and analyzed in this section (Tables 5-8). The correlations can be used to 
discern relationships among different features of contextual subgraphs in terms of whether they are 
positively or negatively related, or in other words, whether certain features (such as large size and a high 
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value of average degree) are inclined to co-occur in the same contextual subgraphs. Spearman’s rank 
correlation coefficient, rather than Pearson product-moment correlation coefficient, is adopted here for 
two reasons. First, as shown in previous sections, the probability distributions of those topological 
properties of contextual subgraphs do not meet the vibrate normality requirement, so Pearson product-
moment correlation coefficient may be misleading if applied to this data set. Second, Pearson product-
moment correlation coefficient assumes a linear dependence between two variables, which cannot be 
verified by available data. Instead, Spearman’s rank correlation coefficient is a non-parametric measure of 
correlation between two variables, which doesn’t require the dependency to be required by a linear 
relationship.  

Table 5 Correlation between topological properties of subgraphs in 1955-1980 

1955-1980 size average degree network centralization clustering coefficient 
size 1    
average degree .964** 1   
network centralization .433** .179 1  
clustering coefficient -.433** -.179 -1.000** 1 
**Correlation is significant at the 0.01 level (2-tailed). 
 

Table 6 Correlation between topological properties of subgraphs in 1955-1990 

 1955-1990 size average degree network centralization clustering coefficient 
Size 1       
average degree .953** 1     
network centralization .468** .192* 1   
clustering coefficient -.468** -.192* -1.000** 1 
*Correlation is significant at the 0.05 level (2-tailed). 
**Correlation is significant at the 0.01 level (2-tailed). 
 

Table 7 Correlation between topological properties of subgraphs in 1955-2000 

1955-2000 size average degree network centralization clustering coefficient 
Size 1    
average degree .967** 1   
network centralization .610** .435** 1  
clustering coefficient -.608** -.412** -.967** 1 
**Correlation is significant at the 0.01 level (2-tailed). 

Table 8 Correlation between topological properties of subgraphs in 1955-2009 

1955-2009 size average degree network centralization clustering coefficient 
Size 1    
average degree .945** 1   
network centralization .692** .475** 1  
clustering coefficient -.693** -.463** -.958** 1 
**Correlation is significant at the 0.01 level (2-tailed). 
 

Tables 5-8 show that phenomena of large size, high values of average degree, star-like structure, and low 
clustering coefficient tend to be co-presented in the same subgraphs. Meanwhile, the growing strength of 
the correlation between graph size and network centralization, as well as average degree and network 
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centralization over time, indicate the trend of more close and systematic collaboration practices. This can 
be explained that, with expanding collaboration space and possibilities, and increasing funding sources, 
researchers tend to form a relatively systematic way of collaboration, typically with a large number of 
authors in the core and a small number in the periphery. This situation further results in the observed 
correlation between topological properties of contextual subgraphs. The scatter plot of those properties in 
1955-2009 is shown in Figure 12. 

Productivity, citation and contextual subgraphs 
In order to show the rich possibilities of quantitatively analyzing various aspects of scientific 
collaboration, in this section we provide two examples. Productivity and citation form the base of impact 
analysis. We investigate the two possible formulations of the relation between collaboration and 
productivity, as well as collaboration and citations, as the following two questions: 

• whether higher values of average productivity or standard deviation of productivities of two 
coauthors is associated with larger/denser/star-like contextual subgraphs; and 

• whether higher values of average number of citations or standard deviation of citations of 
two coauthors is associated with larger/denser/star-like contextual subgraphs. 

Productivity and contextual subgraphs 
An author’s productivity is defined as the number of papers in which he/she is listed as an author in 
the period under investigation. The great diversity that exists among scholars with respect to research 
productivity has been frequently documented (Wanner et al., 1981), and explanations for such differences 
can be categorized into background characteristics, such as gender, other demographics or socioeconomic 
origins, and features of the academic career, such as rank or quality of institution, career stage, disciplines, 
and publication type. Comparisons based on these demographic variables, however, tend to be anomalous 
(Borgman, et al., 2002).  

Table 9 Correlation between topological properties of subgraphs and average productivity of the coauthor 
pair 

Average productivity  size average degree network centralization clustering coefficient 
1955-1980 .500** .495** .495** 0.172 
1955-1990 .061 -0.072 .452** -.452** 
1955-2000 .131** 0.003 .398** -.424** 
1955-2009 .213** .075** .430** -.440** 
**Correlation is significant at the 0.01 level (2-tailed). 
Table 10 Correlation between topological properties of subgraphs and the standard deviation of productivity 

of the coauthor pair 

Standard deviation of 
productivity 

size average degree network centralization clustering coefficient 

1955-1980 .532** .519** .519** 0.209 
1955-1990 -0.013 -0.128 .356** -.356** 
1955-2000 .067* -0.034 .308** -.321** 
1955-2009 .180** .063** .360** -.364** 
*Correlation is significant at the 0.05 level (2-tailed). 
** Correlation is significant at the 0.01 level (2-tailed). 
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Tables 9 and 10 show the correlation between topological properties of sets of contextual subgraphs and 
the average productivity and standard deviation of productivities of the coauthor pairs. As shown in Table 
9, in all time spans except 1955-1990, the size of contextual subgraphs is positively correlated to the 
average productivity with statistic significance, indicating that high values of average productivity and 
large size of contextual subgraphs tend to vary in the same direction over time. It’s reasonable that 
authors writing relatively large quantities of papers tend to be involved with more coauthors. Meanwhile, 
a broad connection with researchers may also tend to increase one author’s productivity. This result 
confirms conclusions from previous studies. For example, Egghe (2008) proved that high productivity 
leads to high fractions of coauthored papers (but low productivity can have low or high fractions of 
coauthored papers) using a scientometrics dataset. The standard deviation of productivities also presents a 
significant positive correlation with graph size in three time spans (Table 9). Additionally, network 
centralization shows statistically significant correlations with average and standard deviation of 
productivity over all time spans. An intuitive example might be mentorship. Usually, a combination of a 
tenured faculty and a junior doctoral student may make both the average and standard deviation of their 
productivities high; the collaboration between them tends to be a star-like structure with the faculty as a 
star and different doctoral students as peripheral nodes. The scatter plot of those variables in 1955-2009 is 
shown in Figure 12. 

Citation and contextual subgraphs 
As for the relationship between collaboration and citation, it is well known that multi-authored 
publications, publications coming from more than one institution, and publications coming from more 
than one country on average are cited more than single-authored publications (Glänzel, 2000; Glänzel & 
Schubert, 2001). It is also known that international coauthorship tends to result in publications with 
higher citation counts than purely domestic publications (Narin et al., 1991; Persson et al., 2004). Citation 
counts of authors are calculated using references of articles published in journals categorized as library 
and information science on ISI from 1955 to Sep 2009. In each time span, citation counts take only paper 
published in this time span into consideration. For example, when calculating citations counts for papers 
in time span 1955-1980, only citations within this time period are counted. 

Tables 10 and 11 show the correlation between topological properties of contextual subgraphs and 
citations of the coauthor pair. The correlation between topological properties of subgraphs and citations of 
the coauthor pair is not as strong as that of productivity in four time spans. As shown in Table 11, in 
1955-1990 and 1955-2000, there is a negative correlation between subgraph size and average citation of 
the coauthor pair, implying highly cited authors tend to be associated with relatively small contextual 
subgraphs. This is reasonable, because prestigious scholars are relatively cautious when selecting 
collaborators. Moreover, Table 12 shows that in all time spans, the standard deviation of citations of the 
coauthor pair yields a significant negative correlation with the average degree, suggesting that coauthors 
with relatively similar citations tend to be associated with relatively dense subgraphs. Figure 12 shows the 
scatter plot of those topological properties of contextual subgraphs as well as the popularity and prestige 
of the pair of coauthors. The box with text within it denotes the coordinates in both horizontal and vertical 
direction. Figure 12 is provided besides the tables of spearman’s correlation index, because scatter plots 
can literally present the relationship between variables through plotting each individual in the sample. 
Therefore, it can give a more direct and vivid image of the correlation between variables under 
investigation. 
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Table 11 Correlation between topological properties of subgraphs and average citation of the coauthor pair 

Average citation  size average degree network centralization clustering coefficient 
1955-1980 0.189 0.293 -0.295 0.295 
1955-1990 -.256** -.278** 0.061 -0.061 
1955-2000 -.175** -.246** .086* -.091** 
1955-2009 0.02 -.087** .221** -.206** 
*Correlation is significant at the 0.05 level (2-tailed). 
**Correlation is significant at the 0.01 level (2-tailed). 
Table 12 Correlation between topological properties of subgraphs and standard deviation of citations of the 

coauthor pair 

Standard deviation of citation node average degree network centralization clustering coefficient 
1955-1980 0.297 .370* -0.158 0.158 
1955-1990 -.213* -.225** 0.041 -0.041 
1955-2000 -.155** -.222** .086* -.091** 
1955-2009 0.028 -.065** .193** -.172** 
*Correlation is significant at the 0.05 level (2-tailed). 
**Correlation is significant at the 0.01 level (2-tailed). 
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Addressing the two questions introduced in the beginning of this section, the above discussion results 
show that higher values of average productivity and the standard deviation of productivities of a coauthor 
pair are positively associated with larger, denser, and especially star-like contextual subgraphs. 
Meanwhile, high values of average citation counts and standard deviation of citation counts of a coauthors 
pair are associated with smaller, sparser, and star-like contextual subgraphs. 

Figure 12 Scatterplot matrix of topological properties of contextual subgraphs as well as 
average and standard deviation of productivities and citations of co-author pairs in 1955-2009 
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Discussion and Conclusion 
In this paper, contextual subgraph is proposed as a novel meso perspective method to quantitatively 
illustrate various factors that affect scientific collaborations. It captures the authors either directly or 
indirectly involved with the scientific collaboration between two specific pair of authors. The 
identification of these authors makes it possible to analyze various possible factors that affect the 
scientific collaboration by exploring the background information of these authors. Thus, a unified, 
quantitative framework for exploring scientific collaboration has been built. More specifically, this 
method can (1) provide a close look at the context of collaboration between two specific coauthors in 
large-scale collaboration networks; (2) give a way to trace back the underlying motives of coauthorship 
quantitatively; and (3) the general procedure of data processing makes it applicable across disciplines and  
make the comparison across fields possible. Here we go back to the research questions raised in the 
introduction part and summarize the answers to them. 

• In what context do two coauthors collaborate and why? 

First, given a specific pair of coauthors in LIS as a query request, the proposed algorithm can efficiently 
and effectively provide and visualize the contextual subgraph characterized by them. It is useful to 
discover contextual information about the collaboration between these two authors (as suggested in 
Figure 1). Second, by conducting a global statistical analysis of the set of all the existing contextual 
subgraphs in LIS, this study depicts the general picture of scientific collaborations in LIS during the time 
period under investigation. Topological properties of contextual subgraphs in LIS during different time 
spans are investigated, generally showing power law shape in probability distribution. Additionally, 
correlations between these topological properties indicate that large size, high values of average degree, 
star-like structure, and low clustering coefficients tend to be co-presented in the same 
subgraphs.Moreover, how topological properties of contextual subgraphs correlate with productivities and 
citations of coauthor pairs, were explored to shed light on why contextual subgraphs present such 
structural features. As shown in the analysis, higher values of average and the standard deviation of 
productivities of a coauthor pair is positively associated with larger, denser, and especially more star-like 
structured contextual subgraph. Meanwhile, high values of average citation counts and standard deviation 
of citation counts of a coauthors pair are associated with smaller, sparser, and star-like contextual 
subgraph. 

Contextual subgraphs can also be incorporated into analyses of coauthorship networks of a macro 
perspective. Generally, clustering coefficients measure the features of two linked nodes that are each 
linked to a third node. Consequently, these three nodes form a triangle and the clustering is frequently 
measured by counting the number of triangles in the network (Girvan & Newman, 2004). It has been 
observed that not only triangles but also other subgraphs are significant in real networks. Contextual 
subgraphs can be seen as a generalized form of the measure of clustering coefficients, which denotes the 
number of triangles (a specific type of subgraph) divided by the number of possible triangles in the graph 
of the same size. Meanwhile, analysis of coauthorship networks from a micro perspective can also take 
advantage of contextual subgraphs. For example, combining all subgraphs between one author and each 
of its neighbor nodes can be used to describe his/her participation and roles in all the contextualized 
coauthorships. From this perspective, this combined subgraph can be seen as a generalized measure of 
degree centrality, which is the size of the subgraph formed by all the associated paths with length one. 
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Our future research will focus on building new micro indicators for individual authors based on 
contextual subgraphs. 
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