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ABSTRACT 
The detection of communities in large social networks is receiving increasing attention in a variety of 
research areas. Most existing community detection approaches focus on the topology of social 
connections (e.g., coauthor, citation, and social conversation) without considering their topic and 
dynamic features. In this paper, we propose two models to detect communities by considering both 
topic and dynamic features. First, the Community Topic Model (CTM) can identify communities 
sharing similar topics. Second, the Dynamic CTM (DCTM) can capture the dynamic features of 
communities and topics based on the Bernoulli distribution that leverages the temporal continuity 
between consecutive timestamps. Both models were tested on two datasets: ArnetMiner and Twitter. 
Experiments show that communities with similar topics can be detected and the co-evolution of 
communities and topics can be observed by these two models, which allow us to better understand the 
dynamic features of social networks and make improved personalized recommendations. 
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1. INTRODUCTION 
The study of social networks has enabled scientists to better understand social communication 
patterns and interpret social principles. Researchers have found that most real world networks, in 
contrast to random networks, exhibit three common properties: the small world property, power-law 
distributions, and community structure with relatively high clustering coefficient (Erdos & Renyi, 
1959; Girvan & Newman, 2002; Milgram, 1967; Newman, 2001). In fact, evidence of communities 
has been detected in a range of different domains and applications (Leskovec, Lang, & Mahoney, 
2010). Communities detected within a social network might correspond to a variety of social 
groupings affected by the heterogeneity of users as well as their interactions. The analysis of 
communities is therefore crucial to establish a better understanding and utilization of social networks 
(Flake, Tarjan, & Tsioutsiouliklis, 2003). However, most of the existing work has focused on the 
structural properties of communities and neglects other important aspects such as their topic features. 
In addition, the structural properties and topic aspects of communities may interact with each other. 
Common interests may drive the formation of communities, and in turn community structure may 
reinforce common interests. Few studies have systematically and quantitatively addressed the 
interaction between the structural and topic properties of communities (Ding, forthcoming).  

Furthermore, social networks and their communities may change over time. Any effort to understand 
the formation of communities and their topical features needs to include the time dimension. Previous 
studies have used state space models on the natural parameters of multinomial distributions to analyze 
the time evolution of topics, or developed the continuous time dynamic model to mine the latent 
topics through a sequential collection of documents (Blei & Lafferty, 2006; Griffiths & Steyvers, 
2004; Iwata, Yamada, Sakurai & Ueda, 2010; Wang, Blei & Heckerman, 2008). Generally, these 
studies have applied a set of approaches to approximate posterior inference over the latent topics. 
However, none considered the community features of the network actors involved in their datasets 
that might reveal some hidden explanation for topical evolution.  

To address those challenging problems for detecting communities by considering their topic features, 
we propose the Community Topic Model (CTM). To further capture the dynamic features of 
community evolution, we propose the Dynamic Community Topic Model (DCTM) by extending 
CTM with the time variables. Both CTM and DCTM were applied to two large-scale datasets: 
Arnetminer (Scholarly publications in the area of Computer Science) and Twitter. The experiments 
show that both models can capture the topic features and dynamics changes of communities.  

This paper is organized as follows: Section 2 defines the problem. Section 3 provides an overview of 
related work and Section 4 discusses the methods, datasets as well as the proposed CTM and DCTM. 
Section 5 analyzes the results by applying the proposed models to two large datasets. Section 6 
discusses the findings and Section 7 concludes the study. 

2. PROBLEM DEFINITION  
In a social network, actors may have different topic interests and therefore can be divided into 
different communities according to their topic distributions. For example, in Figure 1, the author has 
different research focuses: the Semantic Web and Text Mining, which means that he can belong to 
two communities with different topics. Most existing community detection methods focus on the 
topological structures of networks and ignore actors’ topic interests.  

 

 



 
Figure 1: Example that one author may have two topics. 

 

In order to detect communities from the topic level, the proposed algorithm should assign appropriate 
actors for each community based on matching topic interests. Unlike Author-Topic model (Rosen-Zvi, 
M., et al, 2008) that assigns authors to different topics based on the authors’ topic distributions, the 
proposed CTM assigns actors to different communities based on the similarity between authors’ topic 
distributions and community’s topic distributions. For example, researchers, who work in both areas 
of biology and the Semantic Web can be viewed as having similar topic distributions. Therefore, 
these researchers can be grouped into one community. It is hard to find the similar topic distributions 
of a group of authors, because the relationship between a group of authors and their topic 
distributions are latent variables. There are studies emphasizing how these two variables jointly affect 
the formation of links in the document graph (Zhu, Yu, Chi, & Gong, 2007). However, some 
questions are left unanswered, such as whether the structure of communities has an influence on the 
distribution of topics and how topic distribution determines the features of a community.  

Additionally, an examination of changes over time is needed in order to discover the dynamic 
relationship between communities and topics. Traditional methods treat different timestamps 
independently and ignore the temporal continuity between consecutive timestamps (He, Chen, Jian, 
Qiu, Mitra & Giles, 2009; Li, He, Ding, et al., 2010). These studies have two problems. The first 
problem is how to determine the corresponding relationship between latent variables from different 
timestamps (Griffiths & Steyvers, 2004; He, Chen, Jian, Qiu, Mitra, & Giles, 2009).  For instance, for 
a certain community at time t, it is hard to know which community it was derived from time t-1. The 
previous method requires calculating the similarity between the current community in time t and all 
communities in time t-1 in order to figure out the temporal inheritance. The community-topic 
distribution and the topic-word distribution were needed for each calculation, which can be 
computationally expensive (Li, He, Ding, et al., 2010). The second problem is that the temporal 
correlation between consecutive timestamps was not considered. For example, an author’s previous 
research interests may influence his current interests. The proposed DCTM can simulate the changes 
of actors’ interests at different time periods, and observe the evolution of communities and topics 
along the time. 

Taking the example below, an actor in a social network can be defined as actor=(a, { 1 1,z t }, 

{ 2 2,z t }, … { ,n nz t }), where a means the actor, and { ,i iz t } is the tuple which represents actor a 

created an action iz at time point it . We propose the following function to define communities: 

( , , , ) ( , , , )
i j ki j k a a cc a a c t f S S S t . Here, ( , , , )i j kc a a c t represents the decision to put two authors ia  and 

ja into a community kc  at time t, which depends on the formula ( , , )
i j ka a cf S S S , where , ,

i j ka a cS S S  

means the topic distribution of , ,i j ka a c at time t. Table 1 summarizes the mathematical notation used 

in this paper.  



 

Table 1: Notation Table 

Notation Meaning 

d  Document 

w  Word 

x  Author 

z  Topic 

r  Publication venue (e.g., conference) 

c  Community 

N
d

 The number of words in the current document d 

N
D

 The number of words in the entire collection of documents 

a
d

 The set of co-authors in paper d 

  Hyperparameter for generating   from Dirichlet Distribution 

  Hyperparameter for generating   from Dirichlet Distribution 

  Hyperparameter for generating  from Dirichlet Distribution 

  Hyperparameter for generating  from Dirichlet Distribution 

  A multinomial distribution of authors over communities 

  A multinomial distribution of communities over topics 

  A multinomial distribution of topics over words 

  A multinomial distribution of topics over publication venues 

D  Collection of documents 

A  Collection of authors 

T  Collection of topics 

R  Collection of conferecnes 

 

3. RELATED WORK 
 
Community Detection 
Researchers have used a number of methods to detect communities within networks. Two widely 
used approaches are those based on centrality and graph partitioning.  Girvan and Newman (2002) 
used betweeness centrality to examine the community structure in large networks. The original 
algorithm was improved upon by Clauset, Newman, and Moore (2004), who reduced the complexity 
from O(m2n) to O(mdlogn) (where d is the depth of the dendrogram of the community structure). This 
algorithm has been tested empirically and validated as an appropriate model for community detection 
(Radicchi, Castellano, Cecconi, Loreto & Parisi, 2004). Two standard examples of the graph 
partitioning approach are the local spectral partitioning algorithm (Andersen, Chung & Lang, 2008) 
and the flow-based Metis_MQI algorithm (Flake, 2003). These approaches were compared to the 
Girvan-Newman algorithm by Leskovec, et al. (2010).  In applying all of these algorithms against the 
same large-scale dataset, Leskovec, et al. (2010) found that the algorithms produced similar results 
and identified equally compact clusters at all scale sizes. However, none of these algorithms have 
taken into consideration the topic feature of communities. 

Topic Modeling 
Since the introduction of the LDA model (Blei, Ng, & Jordan, 2003), various extended LDA models 
have been used for automatic topic extraction from large-scale corpora. Rosen-Zvi et al. (2008) 
introduced the Author-Topic model, which extended LDA to include authorship as a latent variable. 



Based on the Author-Topic model, Tang, et al. (2008) further extended the LDA and Author-Topic 
model and proposed the Author-Conference-Topic (ACT) model, which is a unified topic model for 
simultaneously modeling different types of information in academic networks. Nallapati and Cohen 
(2008) proposed a Link-PLSA-LDA model as a scalable LDA-type model for topic modeling and link 
prediction. Later, Si and Sun (2009) proposed a tag-LDA model, which extended the LDA model by 
adding a tag variable, and applied it to social tagging systems. The link structure of networks has 
served as an additional area for network research. Chang and Blei (2009) introduced the relational 
topic model (RTM) to model the link between documents as a binary random variable conditioned on 
their contents. Although research has been done in both areas of community detection and topic 
analysis, very few researchers have sought to combine the two. One notable exception is the work of 
Zhou, Manavoglu, et al. (2006), who used topic model for semantic community discovery in social 
network analysis. The other is the work of Liu, Niculescu-Mizil and Gryc (2009) who examined topic 
and author communities for a set of blog posts and citation data through jointly modeling underlying 
topics, author community, and link formation in one unified model. However, it was done 
synchronically, rather than diachronically. Therefore, it did not provide an evaluation of how the 
model functions in examining changes in topics over time.   

As discussed above, studies on community detection haven’t taken other aspects of community 
profile into consideration, while research on topic modeling largely neglects potential relationships 
between topics and community structure. In this paper, we propose a different approach to address 
this question, by integrating dynamics and communities into the topic modeling algorithms. 

 

4. METHODS 
In this paper, CTM (Community Topic Model) and DCTM (Dynamic Community Topic model) were 
proposed to capture the semantic relationships among communities and topics as well as their changes 
over time. Two datasets, Arnetminer and Twitter, were used to test these two models.  

4.1 Datasets 

Arnetminer dataset 
ArnetMiner (http://www.arnetminer.org) is an academic search system developed by the Tshinghua 
University (Tang, Zhang, Yao, Li, Zhang & Su, 2008). The Arnetminer dataset covers the major 
publications in the area of computer science. It was collected by using a unified automatic extraction 
approach on researcher’s profile pages from the Web and other online digital libraries. Currently, this 
dataset contains 629,814 publications, 12,609 conferences, and 595,740 authors covering the period 
of 2000-2010 (Tang, Zhang, Yao, Li, Zhang, & Su, 2008). Each publication has the information 
about abstract, authors, year, venue, and title. The abstracts and titles were pre-processed using a 
stemming algorithm and a stop word list.  

Twitter dataset  
In Twitter, the hashtag is a special tag starting with ‘#’, like #teamlakers or #science. The hashtag is 
used to group tweets with similar topics, which is functionally similar to the publication venue of an 
academic paper. Tweets were crawled via Twitter streaming API from July 9, 2010 to September 9, 
2010, and only those tweets with hashtag were selected. The 30 most frequent hashtags from each 
week were selected to represent the hot topics in Twitter during that time period. Furthermore, 20,000 
tweets containing these 30 hashtags were selected randomly for each week and the retweets were 
removed to prevent repeated information. The original person who posted the tweet as well as the 
mentioned usernames in the tweet are the authors of the tweet. After the preprocessing, the Twitter 
dataset contains152,768 tweets, 104,571 authors, and 158 hashtags.    

 

  



 
4.2 Background Knowledge  
 

To better understand the algorithm of CTM, we will introduce the concepts of Dirichlet distribution, 
sKL, F1-measure and Gibbs sampling in this section. 

1. Dirichlet Distribution: Dirichlet Distribution is a family of continuous multivariate probability 
distribution, which is used to denote the probability of a probability event. There are two main 
reasons for us to apply it to LDA(Latent Dirichlet Allocation): first, it is the conjugate prior of the 
categorical distribution and multinomial distribution, which can help us to solve the model by 
applying Gibbs sampling algorithm; second, it can provide initial parameters estimation, which can 
train LDA model to learn training data and analyze new data.  

2. Gibbs sampling: Gibbs sampling is an efficient algorithm for solving MCMC (Monte Carlo-
Markov Chain) problem. The process of learning topic distribution of training dataset in LDA can be 
seen as a MCMC process. Gibbs sampling can help the process of learning become more and more 
accurate after many step of iterations. 

3. sKL: sKL is used to compute the similarity between two variables represented by feature vectors. 

Assuming we have two authors 1 2,x x  with interesting distribution over ten topics, then the sKL 
value between the two authors can be seen as below:             

 

10 1 2
1 2 1 21

2 1

( , ) [ log log ]i i
i ii

i i

xz xz
sKL x x xz xz

xz xz
   

                                                            (1) 
we can find that the lower the sKL is for two variables, the more similar the two variables are. 

4. F1-measure: we often use precision and recall to evaluate the performance of an algorithm’s 
prediction power. Precision is the percentage of predictions that are correct while recall is the 
percentage of total number of correct predictions that are achieved. F1-measure integrates precision 
and recall to give a comprehensive evaluation for the performance of target model. 

 
4.3 CTM (Community Topic Model) 
 

The essential idea of CTM is to detect communities based on topic distributions over all authors and 
cluster authors with similar topic distributions together in one community. The community detection 
is achieved through a statistical learning process, during which the assignment of an author to a 
certain community (also including other types of assignments, like assigning topic to author, 
conference to topic, etc.) is implemented by sampling from several continuously updated and 
mutually related probability distributions. 

The graphical representation of the learning process is shown in Figure 2, which can be explained by 

the following example. A group of authors, ad , collaborate on a document/paper  d . For each author 

x  in ad , x  first selects a community c  from the author-community distribution  ; then select a 

topic  z  under community c  from the topic-community distribution  ; and finally select a word w  

under topic z  from the topic-word distribution  , and a conference r  related to z  from the topic-

conference distribution  . The three shaded nodes, a
d , w and r , are all observable. 



 

Figure 2: Community Topic Model (CTM) 

Gibbs sampling is used to estimate 4 parameters  ,  , and  , whose initial values (i.e. prior 

probabilities) are determined by another 4 hyperparameters:  ,  ,   and  and their empirical 

values are given by   50 / C ,  50 / T ,  0.01  and   0.1  (Lu, et al., 2010; Rosen-zvi, et al., 

2008; Tang, et al., 2008). The final value of  ,  , and   are obtained after 1000 iterations of 
sampling and estimation. 

In each iteration, CTM assigns a community cC  and a topic z T , to each author x A  and each 

word w V , appeared in every document d D . For every possible assignment (c, z)C  T the 
following probability is calculated: 

 
1 1 1 1 1 1 1

, ( , , | , , , , , )i i i i i i i i i i i i
c z dP z z c c x x w w r r z x w a                                                     (2)    

 
where i  and i 1  denotes the corresponding values of the current and previous step of iteration; 
Pc,z denotes the probability that (c, z)  is assigned to x  given the previous estimated results and 

current observation. Based on the multinomial distribution {Pc,z , (c, z)C  T} , a community c  and 
a topic z  will be randomly sampled and assigned to author x  and word w . In addition, topic z  is 
assigned to conference r without sampling but from direct observation. After all assignments are 
done in the ith iteration, all probability matrices are updated as:   

, , , ,
, , , ,

, ' , ' , ' ,
' ' ' '

, , ,
( ) ( ) ( ) ( )
x c c z z w z r

x c c z z w z r
x c c z z w z r

c C z T w V r R

n n n n

n n n n

   
   

   
   

   
   

      
                             (3) 

x,c denotes the entry of author x and community c in matrix  , and nx,c denotes the number of 
times author x  is assigned to community c  at the current iteration. The similar denotation applies to 
c,z ,z,w , and  z,r . 

For each iteration, parameters estimated from previous iteration are utilized to make re-assignment for 

all the authors. The final probability distribution matrices, i.e. ,  , and  , will be very close to the 
actual value when the iteration is done. In other words, the assignment of authors to communities will 
be sufficiently accurate in the end.  In the process of statistical learning, the assignments of topics to 
communities are determined by all the authors’ topic assignments, and authors with similar topic 
distribution are most likely to be assigned to the same community as the CTM estimation becomes 
more and more accurate. Besides, the rank of an author in a community (the probability of assigning 
the author to the community) is determined by his/her interest in the most popular topics (topics with 
high probabilities of being assigned to the community) in that community. For instance, if an author 



is interested in several topics and frequently writes papers to those topics, he/she is very likely to be 
assigned to the communities in which those topics rank high, and become a highly ranked author in 
that community. The algorithm in mathematic language is shown as the following: 

1. For i = 1:1000 iterations: 
2.  For each document d: 

3.  For each author x in document d: 

4.   For each word w in document d: 

5.    Compute Equation (2) and sample a community c  and topic z  to the current 
author x and word w; also assign topic z  to conference r . 

6.    Update  ,  ,   and   according to Equation (3);  

7.  End for word w ; 

8.  End for author x ; 

9.  End for document d ; 

10. End for iterations. 

11. Output final  ,  ,   and  . 

 

4.4 DCTM (Dynamic Community Topic Model) 
To model the evolution of a community, we assume that the distributions of communities are based 
on a Bernoulli trial. When time goes from one time slice to another, we flip a coin for each author. If 
the coin lands as a head, the previous community distribution will be kept. Otherwise, a new 
distribution will be sampled for that author. To determine authors’ current interest, a switch variable 
s  is introduced. The value of s ( {0,1}s ) is sampled based on a Bernoulli distribution  . When 

the sampled value of s equals 1, author’s current interest is determined by his status in the last time 
period; when the sampled value of s equals 0, author’s current interest is not influenced by his 
previous status but his current status.  

In Figure 3, the results from previous time point t-1 are used as prior knowledge to train the current 
training dataset at the time point t, and the Bernoulli trial is applied to simulate the changes of 
authors’ interests. The dynamic model assigns a unique id for each author, community, topic, word 
and conference at the first time period, and passes these to the next time period after the iteration of 
the first time period is finished. Therefore, all communities and topics from different time slices can 
be consistently tracked. The pseudo-code of DCTM can be seen in Figure 4.  

5. RESULT 

5.1 Result analysis from the static perspective 
For the Arnetminer dataset, the whole time span was divided into three periods: 2000-2003, 2004-
2007, and 2008-2010. In each time period, CTM was used to calculate the topic distribution of author, 
community and conference. The probability distribution of author for a given community was used to 
assign authors to different communities. 20 communities and 30 topics were extracted using the CTM. 
Authors in each community detected by CTM have similar topic distributions.  

 



 

Figure 3: Dynamic Community Topic Model (DCTM) 

 

Figure 4: Algorithm description for DCTM 

CTM can calculate the author community distribution and community topic distribution, while other 
existing models could not. These distributions provide enriched information to analyze the 
relationships among author, community and topic. Figure 5a displays the author community 
distributions for the selected 10,000 authors during the period of 2008-2010. This can be explained as 
the authors’ community preference. The value in the y-axis indicates the probability of an author 
choosing a community. Some authors have very high preference for certain communities such as 
Community 1 (computer system, network), Community 2 (intelligence system, parallel and 
distributed systems, semantic web, neural, wireless network, fuzzy), and Community 15 (image 
recognition, knowledge management, mathematics, machine learning, user interface and collaboration 
system). The Figure 5b shows the community topic distribution. For each community, the probability 
of a given topic (i.e., the value in y-axis) indicates the significance of this topic in that community. 
Some communities have strong preferences on Topic 4 (manufacturing optimization), Topic 15 
(parallel and distributed systems), Topic 21 (embedded systems), and Topic 26 (knowledge 
management).  
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                      (a) Author-community distribuiotn                (b) Community-topic distribution 

Figure 5: probability distribution in Arnetminer in 2008-2010 
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Figure 6: Community distribution of Arnetminer in 2008-2010 

 

The value of y-axis in Figure 6 represents the mean probability of all authors choosing a community, 
which can be inferred as the popularity of a community. Figure 6 shows the popularity of 
communities during the period of 2008-2010. The range of popularity for all communities is between 
0.049 and 0.053, indicating that the popularity differences among all communities are small. 
Community 15 is the most popular community in 2008-2010.  
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Figure 7: Topic distribution in Community 15 in Arnetminer 

Figure 7 shows the topic distribution for Community 15. Topic 16 and 26 are the most popular topics 
in Community 15, followed by topic 17, 25 and 28. Table 2 illustrates the top words, conferences for 



above popular topics and the top authors for the Community 15. Topics in Community 15 are diverse 
including image recognition, software development, wireless network, information management and 
mathematic algorithms. The listed top journals and conferences are consistent with the content of the 
topics, for example, PAMI (IEEE Transactions on Pattern Analysis and Machine Intelligence) in 
Topic 16, SSEN (ACM SIGSOFT Software Engineering Notes) in Topic 17, and WN (wireless 
network) in Topic 25. 

Table 2: The description of Topic 16, 17, 25, 26, 28 

Topic 16 17 25 26 28 

Word 

imaging           
0.049500                  
recognition           
0.020414                
detection           
0.017042                  
video           
0.014272                  
feature           
0.013188                 
segmented           
0.0127366 

software           
0.0462338               
development          
0.0150655               
engine           
0.0144427               
oriented           
0.0143241               
architecture           
0.0121295               
component          
0.00987569 

networks           
0.0834684             
wireless           
0.0353384             
mobile           
0.0217488             
sensor           
0.0214399             
routing           
0.0129979            
protocol           
0.0123287             

information           
0.0240355                
management            
0.017254                    
systems           
0.0149435                  
business          
0.00921228               
knowledge          
0.00852213              
communication          
0.00834209 

computer           
0.0188073                   
algorithm           
0.0142956               
polynomial           
0.0141056                 
algebras          
0.00954637            
linearization           
0.0093564            
approximation          
0.00840656                 

Conference 

IEEE PAMI        
0.0357286 
PRL           
0.0303648 
PR          
0.0229706 
SP          
0.0145159 

 IEEE Software       
0.0167132 
ACM SSEN        
0.0163849 
JSS          
0.0139675 
IEEE SE          
0.0122365 
        

IEEE/ACM  
Networking           
0.0308232      
CN: CTN 
0.0302538         
WN           
0.0184785      
CC        
0.015787 

SS            
0.0280557                
Computer           
0.0168215 
JASIST           
0.0139223 
IM          
0.0131371 

JCAM        
0.0406855 
DM          
0.0252367 
JSC         
0.0250928 
JCTS          
0.0226939 
TCS          
0.0226459 

Metin Demiralp      0.000675616      Nikos Fakotakis        0.000411245        Yang Liu                0.00038187           
Virginie Govaere    0.000323121      Michael McAleer     0.000323121         Marc Moonen        0.000323121          
Ibrahim Busu         0.000293746       Nico Mastorakis       0.000293746        Thierry Martin        0.000293746 
Zhong Liu              0.000293746          

 

In Table 2, the top ranked authors tend to have different research areas. For example, Metin 
Demiralp’s research focus is mathematic algorithms. His work has been published in different 
conferences and journals specialized in microelectronics, applied mathematics, engineering, 
informatics and communications, and signal processing. The function of the latent variable of 
community is to group the authors with similar topic distributions into one community. This function 
can better discover authors with similar research interests and therefore can be used to make 
personalized recommendations. For example, according to the topic distribution of Community 2, its 
main topic is Topic 1 (network system), Topic 15 (parallel and distributed systems), Topic 25 
(wireless network), Topic 16 (image recognition), Topic 8 (intelligence system and semantic), and 
Topic 11(fuzzy, neutral, system control). Authors who have high ranks in Community 2 may be 
interested in publishing articles with several of those topics. In CTM, each author has a community 
distribution and each community has a topic distribution. The assignment of an author to a 
community is based on the similarity between the topic distribution of an author and the topic 
distribution of a community. This is different compared to other existing LDA models. In other LDA 
models, each author also has a topic distribution. But authors are only grouped based on their 
probabilities on a single topic rather than being grouped by their probability distribution over all 
topics. In other words, other LDA models can automatically define a topic by using a set of words 
and their probabilities in that topic, while CTM can automatically define a community by using a set 
of topics and their probabilities in that community. 



5.2 Result analysis from the dynamic perspective  
DCTM has the built-in functionality to simultaneously track the temporal changes of topics and 
community structures, which can identify the hidden dynamic relationships between topics and 
communities. Here, DCTM was tested on the Arnetminer and Twitter datasets to unveil their 
community evolution patterns.   

The features of community evolution in Arnetminer 
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                 (a) The evolution of communities                                             (b): The evolution of topics 

Figure 8:  The evolution of communities and topics during three time periods in Arnetminer 

Figure 8 displays the evolution of all communities and topics along three time periods in Arnetminer. 
Figure 8a displays the changes of all authors’ preferences for each community. In period 1 and 3, 
authors have significant preferences for some communities, while in period 2, this phenomena is not 
obvious. In Figure 8b, most of the topics exhibit a smooth increase or decrease along the time. 
Among them, Topic 15 (parallel computation/distribution systems) is significantly higher than other 
topics during all three time periods.  

 

(a): Changes of Community 1 in 1st time period 

 



 
(b): Changes of Community 1 in 2nd time period 

 

 
(c): Changes of Community 1 in 3rd time period 

Figure 9:  Changes of Community 1 during three time periods in Arnetminer 

 
CTM ranks authors and topics in each community. The ranking of a topic in a community depends on 
the probability that the topic is assigned to the community. The ranking of an author in a community 
depends on two factors: first, the active level of the author during a certain time period; second, the 
ranking of the representative topics of the author in the community. Intuitively, if an author writes a 
lot of papers in the highly ranked topics in a community, the author tends to be ranked high in that 
community. In our experiment, we selected top 100 ranked authors in each community, and found 
that few top ranked authors remain the same in a community across all three different time periods. 
The main reason is that the ranking is based on active level of each author in a certain time period but 
not the influence of that author in related research area. In other words, even the ranking of a well-
known author in some community will drop as long as the author does not write as many papers as 
before.   

Another finding is that highly ranked topics for a community do not change significantly along the 
time. Specifically, in Community 1, the top 3 ranked topics (i.e. Topic 9: Database, 14: Machine 
Learning, 25: Network and Wireless) in the first time period still ranked relatively high during the 
next two time periods. However, the overall topic distribution is still changing and the ranking of 
some topic does not remain the same. For instance, in the third time period, Topic 1 (i.e., information 
management) is ranked much higher than the previous two time periods). 



 

Figure 9 displays the changes of its top ranked authors and topics in Community 1. The topic 
distribution of Community 1 does not change significantly for the entire time periods (For example, 
the representative topics in blue box is mainly about database, machine learning, and clustering 
algorithm in first time period; distribute system, system performance in second time period; and user 
interface, agent, optimization, and intelligence in the third time period), while the composition of top 
ranked authors is experiencing relatively big changes. Very few authors remain in the same 
community over the three time periods. The probability of an author for a given community is 
associated with the yearly productivity of this author. For example, for two authors with similar topic 
distributions, if an author published more papers than the other in a certain time period, he will be 
ranked higher.  
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Figure 10 Topic Distribution of Community 1 over three time periods 

 

The features of community evolution in Twitter 
Unlike the academic community from the Arnetminer data, it is hard to find representative users of 
Twitter from each community and analyze their interests. Thus, we focus on how the overall 
composition of the community evolves over time and around different topics. DCTM was applied to 
the Twitter data to detect the evolution of a community and its relation to the topic of the community. 
Two representative communities from the Twitter dataset were selected for the comparative analysis. 

Figure 11 and 12 show the community evolution of the Community 0 and Community 13 during 
three periods of time (i.e., July, August, and September). Each star-network represents the 
constitution of the community at a specific time period, with the central node representing the 
community and time ID, and the surrounding nodes representing the users. The edge between the 
central node and surrounding nodes represents the member relationship. Figure 13 and 14 highlight 
the key words of the corresponding community whose size is proportional to its frequency in that 
community. These highlighted key words can be viewed as the main topics in the corresponding 
community. 

Many users in Community 0, like Job_Universe and photosrus, consistently belong to the community 
from period 1 to period 3. During each time period, some new users join the community. The 
consistent users constitute the core of Community 0 while the new users lie around the circumference 
of Community 0. However, the evolution of Community13 is quite different. From time period 1 to 
time period 2, some users act as a bridge to connect Community 13 during the two periods of time, 
which is very similar to Community 0. But during the time period 3, Community 13 is flushed with 
new users and lost many old users. The size of the community shrinks during this time period as well. 

The topic of Community 0 is primarily about job hiring. It is a stable topic that may not exhibit traffic 
bursts and is regularly tweeted in Twitter. Therefore, the community organized around this type of 
topic has relatively fixed members. The topic of Community 13 focuses on iPhone. The launch of 
iPhone 4 in the end of July garnered a lot of attention in the marketplace. From the beginning of July  



 

Figure 11: Evolution of Community 0 in Twitter 

 

Figure 12: Evolution of Community 13 in Twitter 

 

Figure 13: Highlighting words for Community 0 in Twitter 

 

Figure 14: Highlighting words for Community 13 in Twitter 

to the middle of August, many tweets about iPhone emerged. These types of users can be called 
“social precursors” who are willing to initiate the use of new technology and spread it out to other 
members. However, when the iPhone 4 becomes more common, the tweets about this topic drop 
significantly and eventually diminish. Only a very small number of tweeters who are aware of this 
topic much later form this isolated Community 13 after the middle of August. This type of topic is 
“hot but transient” and is generally called a “burst”.   

The dynamics of popularity of different topics can be directly detected by the DCTM. Among the 30 
topics extracted by the DCTM from the Twitter data, some representative social topics were selected 
for discussion and their popularity tendency was plotted in Figure 15. 



 
Figure 15: Topic temporal tendency for representative words in Twitter 

The World Cup was a popular topic during its final match but lost its popularity soon after the match 
is over. The discussion of the iPhone became extremely intense right after its launch at the end of July 
and gradually cooled down when it was replaced by its next generation. The topic about the 
Australian election reached its peak around the end of August when the final results were publicized. 
After that, its popularity fell, but not very sharply, implying some continuous discussion was still 
going on. Similarly, the topic of Indonesian Independence Day reached its peak at almost the same 
time as the Australian election and remained at its peak for quite a while. The topic popularity of 
President Obama’s healthcare plan dropped linearly throughout the whole period. The topic of the 
family life, which is a consistent topic in Twitter, showed only 0.8% fluctuations in popularity during 
the whole period. 

6. DISCUSSION  
 

The dynamic function of DCTM 

The dynamic function of DCTM can estimate the current topic and community distributions based on 
the priori knowledge from the previous time period. Here the experiment was designed to 
demonstrate its dynamic function. The entire Twitter dataset, and a subset of the Arnetminer that 
includes 10,000 publications, 5307 conferences, 166774 authors, and 26617 words from 2000 to 2010, 
were selected. The experiment contains the following steps: 

Step 1: 10% of the papers from each dataset (including Arnetminer and Twitter) of each time 
period were randomly selected as a testing data; the rest was used as a training data.       

Step 2:  DCTM was applied to the entire training dataset and generated the author-community, 
community-topic, topic-word, and topic-conference distribution matrixes for each time period.   

Step 3:  The training data was divided into three time periods and the CTM was applied on the 
training data in each time period. 

Step 4:  For each time period, the results of CTM and DCTM were used to recommend a 
conference or journal (here a hashtag in tweets was viewed as a conference or journal) for each paper 
or tweet in the testing data separately. F1-measure was used to evaluate the recommendation results 
of the CTM and DCTM correspondingly. 

Table 3: F1-measure of CTM and DCTM 

Arnetminer Index CTM DCTM 

Time period 2 
(2004-2007) 

F1-measure 0.1051 0.1102 

Time period 3 F1-measure 0.0944 0.1073 



       (2008-2010) 

Table 3 shows that the dynamic function can significantly improve the performance of the DCTM for 
conference and journal recommendations. For each time period, it can use priori knowledge to 
estimate the new dataset and adjust the results. Unlike the performance of the CTM and DCTM in the 
academic world, DCTM does not outperform CTM on the Twitter data, implying that historical 
information does not improve the task of recommending hashtags for tweets. There are two 
explanations: 1) a hashtag is more ephemeral than a conference. Most conferences are held yearly, 
while most hashtags only occurred frequently during a specific period of time; and 2) the informality 
and inconsistency of hashtag usage is another reason. It is common that many hashtag users ignore 
the original meaning of a particular hashtag. An obvious example is the overwhelming amount of 
spam tweets with hot hashtags. It remains as our future work on the optimization of both models for 
twitter recommendation.   

We applied “Statistical Significance Test” to further prove the advantage of dynamic mechanism. In 
order to get enough samples, we set the number of time periods 10 (each year can be seen as a 
timeperiod) and re-did the experiment and calculated F1-measure of both CTM and DCTM in each 
timeperiod. T-test is applied to compare the results of CTM and DCTM, and the final p-value and 
deviation value can be seen as below in Table 4: 

Table 4: P-value for model comparison t test 

 P-Value Average Deviation 

DCTM vs CTM <0.05 +0.0058 

 

As can be seen in Table 4, the p-value of t test is smaller than 0.05, which means that there exists a 
statistically significant difference in performance between DCTM and CTM. The average deviation is 
bigger than zero, which means that DCTM outperformance CTM on F1-measure. 

 

Dynamic analysis of topic and community  
Griffiths (2004) pointed out that an important part of realizing dynamic topic model is to build up the 
consistency for latent variables between adjacent timestamps. The dynamic function of DCTM can 
automatically generate communities and topics at the first time point and guarantee the consistency of 
latent variables for other time points. Based on the Arnetminer dataset, the similarity of all 
communities and topics between each two adjacent time periods was calculated and displayed in 
below heat-maps (Figure 16 and 17):     
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Figure 16: Community Similarity between each adjacent time periods based on DCTM 

In Figure 16 and 17, the dark color means that two variables have a high similarity. All the heat-maps 
exhibit a high similarity on the diagonal, which means that the same latent variables can be assigned 
to a unique id through the whole time period. To compare with results generated by CTM based on 
the same dataset (see Figure 18), it is clear that there is no consistency for communities for different 
time periods. DCTM demonstrates the clear advantage on identifying the consistency for the latest 
variables.  
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Figure 17: Topic Similarity between each adjacent time periods based on DCTM   
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Figure 18: Communities similarity between two adjacent time periods based on CTM 
 
Community content and structure analysis  
Most community detection algorithms are based on the graph topology of nodes and edges. The 
members in a community identified by CTM and DCTM demonstrate the strong topic similarities. 
Therefore, authors in such community may not coauthor with each other but do share common topic 
interests. Conductance was used to measure the quality of different communities, which is defined as 
(Leskovec, Lang, Dasgupta & Mahoney, 2008): 



                                                 
( )

2
c

c c

s
f C

m s



,                                                                               (4) 

C denotes the set of nodes in a community, cm  as the number of edges in C, and 

| {( , ) | & } |cs u v u C v C    is the number of all (u, v) that satisfies the condition. According to 

the definition of conductance, a community of high quality should have a low conductance value. 
Girvan-Newman community detection algorithm was applied to the coauthor network from the small 
dataset of Arnetminer (including 10,000 papers) (Girvan & Newman, 2002). The detected 
communities were compared with the communities derived from DCTM. Tables 5 and 6 list the 
conductance of top five communities derived from the Girvan-Newman approach and DCTM 
correspondingly. 

Table 5: Conductance for five communities derived from DCTM 

Community id 14 4 20 9 11 

Conductance 0.75399 0.76475 0.77233 0.79515 0.79544 

 

Table 6: Conductance for five communities derived from the Girvan-Newman approach 

Community id 7 17 8 16 18 

Conductance 0.02229 0.03265 0.03541 0.03684 0.03775 

 

The conductance of communities identified by DCTM is higher than communities derived by the 
Girvan-Newman approach, which means that the number of coauthor connections in a DCTM 
community is fewer than that in a Girvan-Newman community. Average sKL divergence was 
calculated for the 500 authors in DCTM communities and 500 authors in Girvan-Newman 
communities (Rosen-zvi, Griffiths, Steyvers & Smyth, 2008). The results are summarized in Table 7 
and 8. 

Table 7: Average sKL for five communities derived from DCTM  

Community id 14 4 20 9 11 

Average sKL 0.0435 0.0379 0.0446 0.0382 0.0433 

 

Table 8: Average sKL for five communities derived from the Girvan-Newman approach 

Community id 7 17 8 16 18 

Average sKL 0.0252 0.0326 0.0192 0.0272 0.0308 

 

The low sKL divergence means the nodes in a community have high topic similarity. The average 
sKL in Table 7 is higher than that in Table 8 indicates that authors in Girvan-Newman community 
tent to share similar topics than those in the DCTM community, because the co-author relationship 
reflects a strong semantic connection among different nodes. However, the results in Table 7 still 
indicate that DCTM can discover authors with relative high similarity of topic distribution in a 
detected community, while those authors may have few co-author relationships compared with the 
communities derived from Newman-Girvan (in Table 5 and 6, the authors in the DCTM community 
tent not to collaborate with each other). So the nodes in the community identified by the DCTM 
model embedded the feature of sharing similar topics but collaborating in a limited manner. That can 
provide meaningful recommendations for authors who would like to find potential cooperators that 
they do not know before.  



We also calculated the average conductance of all communities detected by CTM and Girvan-
Newman algorithm separately, and obtained the result of 0.03343 from 132 communities detected by 
Girvan-Newman algorithm, as well as 0.7742 from 20 communities detected by CTM. We found that 
the average conductance of communities identified by DCTM is higher than communities derived by 
the Girvan-Newman approach, implying that the number of coauthor connections in a DCTM 
community is fewer than that in a Girvan-Newman community. 

 

7. CONCLUSION AND FUTURE WORK 
In this paper, we present the CTM and DCTM to detect communities and topics. The CTM contains 
four observed variables and two latent variables. It can discover topic features from the four observed 
variables and uses the relationships to define communities. The dynamic function of DCTM takes 
into account the temporal continuity between consecutive timestamps that ensures the consistency for 
each community and topic during the whole time period. Experiments show that the CTM can find 
communities sharing similar topics, while the DCTM can identify the dynamic features of 
communities and topics. In the future, we will integrate a supervised model into the DCTM in order 
to capture the highly cited authors instead of highly productive authors. In order to improve 
computational efficiency, we will consider adopting parallel computing technology such as the MPI 
(Message Passing Interface) to accelerate the process.                
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