
 

 

Data‐Drive	Discovery:		
A	New	Era	of	Exploiting	the	Literature	
and	Data	
Ying Ding, Kyle Stirling, Indiana University, USA 

 

Abstract: In the current data-intensive era, the traditional hands-on method of conducting 
scientific research by exploring related publications to generate a testable hypothesis is well on 
its way of becoming obsolete within just a year or two. Analyzing the literature and data to 
automatically generate a hypothesis might become the de facto approach to inform the core 
research efforts of those trying to master the exponentially rapid expansion of publications and 
datasets. Here, viewpoints are provided and discussed to help the understanding and challenges 
of data-driven discovery. 

 

 

The Panama Canal, the 77-kilometer waterway connecting the Atlantic and Pacific oceans, has 
played a crucial role in international trade for more than a century. However, digging the Panama 
Canal was an exceedingly challenging process. A French effort in the late 19th century was 
abandoned because of equipment issues and a significant loss of labor due to tropical diseases 
transmitted by mosquitoes. The United States officially took control of the project in 1902. The 
United States replaced the unusable French equipment with new construction equipment that was 
designed for a much larger and faster scale of work. Colonel William C. Gorgas was appointed 
as the chief sanitation officer and charged with eliminating mosquito-spread illnesses. After 
overcoming these and additional trials and tribulations, the canal successfully opened on August 
15, 1914. The triumphant completion of the Panama Canal demonstrates that using the right tools 
and eliminating significant threats are critical steps in any project.  

More than 100 years later, a paradigm shift is occurring, as we move into a data-centered era. 
Today, data are extremely rich but overwhelming, and extracting information out of data requires 
not only the right tools and methods but also awareness of major threats. In this data-intensive 
era, the traditional method of exploring the related publications and available datasets from 
previous experiments to arrive at a testable hypothesis is becoming obsolete. Consider the fact 
that a new article is published every 30 seconds (Jinha, 2010). In fact, for the common disease of 



diabetes, there have been roughly 500,000 articles published to date; even if a scientist reads 20 
papers per day, he will need 68 years to wade through all the material. The standard method 
simply cannot sufficiently deal with the large volume of documents or the exponential growth of 
datasets. A major threat is that the canon of domain knowledge cannot be consumed and held in 
human memory. Without efficient methods to process information and without a way to 
eliminate the fundamental threat of limited memory and time to handle the data deluge, we may 
find ourselves facing failure as the French did on the Isthmus of Panama more than a century ago. 

Scouring the literature and data to generate a hypothesis might become the de facto approach to 
inform the core research efforts of those trying to master the exponentially rapid expansion of 
publications and datasets (Evans & Foster, 2011). In reality, most scholars have never been able 
to keep completely up-to-date with publications and datasets considering the unending increase 
in quantity and diversity of research within their own areas of focus, let alone in related 
conceptual areas in which knowledge may be segregated by syntactically impenetrable keyword 
barriers or an entirely different research corpus. 

Research communities in many disciplines are finally recognizing that with advances in 
information technology there needs to be new ways to extract entities from increasingly data-
intensive publications and to integrate and analyze large scale datasets. This provides a 
compelling opportunity to improve the process of knowledge discovery from the literature and 
datasets through use of knowledge graphs and an associated framework that integrates scholars, 
domain knowledge, datasets, workflows, and machines on a scale previously beyond our reach 
(Ding et al., 2013).  

Scientific Discovery 

Scientific discovery revolves around the process of problem solving. It either uses existing well-
established methods to explore a new area or invents new methods to solve existing problems. 
Either way, it is a journey into unknown terrain. Trial-and-error remains the most common 
approach to testing new ideas, learning from failures, and, eventually, finding success. The 
problem-solving process can be viewed as a search for a path connecting the initial state and the 
goal state (Klahr, 2000). In cognitive science, a problem space contains the set of states, 
operators, goals, and constraints, and this problem space can be huge or small depending on 
whether you are on the right path to the final goal. The time to reach the final goal can be 
significantly shortened if the right tools are used.  

How challenging the problem-solving process is also depends on the basic components in a 
problem space. The vagueness of some of these components can easily make scientific discovery 
purposeless. For example, one can have a task with a well-defined goal state (e.g., proving a 
mathematical equation) but a vague initial state, a task with a clear initial state (e.g., finding 
potential binding drugs for a given target) but an unclear goal state, or even a task with an ill-
defined initial state and goal state (e.g., inventing a cool tool). More knowledge available to the 
problem-solver can significantly reduce the vagueness of basic components and set clear 
boundaries on the problem space. It is important to understand the problem space and foresee 
next steps. 



Knowledge Discovery 

Hypotheses can be generated from different sources. The dominant approach of developing a 
hypothesis in biology and medicine, for example, is through first-hand observation, which 
includes experimental data, electronic medical records, gene sequence data, and lab test results. 
The alternative method of generating a hypothesis from literature is viewed as a serendipitous 
process with great uncertainty—even more so now because the vast amount of published 
research contains a diversity of knowledge beyond what domain experts can humanly reason. 
Especially for researchers in transdisciplinary domains, it is no longer possible for domain 
experts in one domain to fully master the knowledge in another domain.  

Mining literature to generate hypotheses is not confined to biology or medicine but can be done 
in almost any science. Publications are no longer just an output of research but rather a vital part 
of the scientific process. A significant number of associations between different biological 
entities (e.g., disease, gene, drug, side effect, and pathway) are scattered across millions of 
biomedical articles. Mining these documented associations can infer innovative associations and 
generate novel hypotheses, especially in the translational research. 

Sciences are being conducted in a totally different way than 20 years ago. For example, biology 
is shifting from conventional biology to conceptual biology (Blagosklonny & Pardee, 2002) and 
moving further to systems biology (Oprea, Tropsha, Faulon, & Rintoul, 2007, Kell, 2006), in 
part because of a strong opinion that the conceptual review and systems thinking of available 
published knowledge should take its place as an essential component of scientific research. The 
world of ideas (i.e., published knowledge) interplaying with high-throughput experiments, 
computational modelling, and technology can generate intelligent hypotheses that will end the 
aimless fishing adventures in the conventional biology. New knowledge, derived from tens of 
thousands of publications and manually curated datasets, can be linked back to published 
knowledge to form a self-evolving ecological knowledge base (Mons et al., 2011). Predictions 
and experiments that were carried out for other reasons can be reused or revealed in a new 
context that fully embraces the holistic view of knowledge processing.  

New ways of conducting research are in high demand, and examples of new methods can be 
found in many disciplines (Ding et al. 2013). Don Swanson’s (1986) work about undiscovered 
public knowledge has had a wide impact on association discovery and demonstrated that new 
knowledge can be discovered from sets of disjointed scientific articles. Swanson’s vision of the 
hidden value of the literature of science in biomedical digital databases is remarkably innovative 
for information scientists, biologists, and physicians (Swanson et al., 2001, Bekhuis, 2006). 
Literature-related discovery that mines knowledge in two disparate sets of literature have 
identified several non-drug approaches that can be used to halt or reverse the symptoms of 
multiple sclerosis, cataracts, and other chronic diseases (Kostoff, 2012). By combining PubMed 
literature and public datasets, Chen et al. (2012) can predict potential drug and target pairs based 
on publications and open datasets. The method performs extremely well in correctly identifying 
known drug-target pairs in the data and compares favorably with the established Similarity 
Ensemble Approach, or SEA, method (Keiser et al., 2009) for predicting new drug-target 
interactions as well as with the Connectivity Map, or CMAP, (Lamb et al., 2006) for associating 
drugs with changes in gene expression levels.  



Scott Spangler and colleagues (2014) mined information contained in published articles to 
identify new protein kinases that phosphorylate the protein tumor suppressor p53. They 
successfully demonstrated that it is possible to automatically generate hypothesis for domain 
experts based on existing published scholarly articles. Even in humanity, Franco Moretti’s 
distance reading solution tackles literary problems by applying computational methods to 
aggregate and analyze massive amounts of data and generate hypotheses. He advocates that 
distance reading is needed because nobody is able to read the 60,000 novels published in 19th-
century England to understand Victorian fiction (Schulz, 2011). All of these example show that 
generating hypothesis by mining existing literature and open datasets can advance science and 
generate huge societal impact.  

And while these examples highlight that human brains feature a great capacity for integrating 
information and recognizing patterns, computers are catching up. IBM Watson, a supercomputer, 
can process millions of articles, patents, Wikipedia pages, and datasets to facilitate research and 
diagnostic decision making in lung cancer treatment (Upbin, 2013). It also famously defeated 
two of the best human Jeopardy! players, Ken Jennings and Brad Rutter, in 2011, by parsing 
keywords in a large set of data to search for related terms as responses. While it is fast, it bears 
the disadvantage of a misunderstanding of the context of keywords. As well, the recent success 
of image recognition powered by deep learning outperforms humans (Thomsen, 2015). Project 
Adam, an initiative by Microsoft, can accurately identify a dog’s breed based on a single photo. 
Soon, it will be possible for computers to provide nutritional information about a meal or help 
diagnose skin diseases (Chansanchai, 2014).  

Translational Thinking 

What Hal Varian called “combinatorial innovation” combines or recombines different 
component parts of previous innovations or ideas to generate new innovations (Mckinsey, 2009). 
Polymerase chain reaction, which earned Kary Banks Mullis the 1993 Nobel Prize in Chemistry, 
is the result of recombination of well-understood techniques in biochemistry (Brynjolfsson & 
McAfee, 2014). Dozens and dozens of publications that documented previous research outputs 
can be used to rigger translational thinking. These publications can be analyzed and mapped to 
show the scholarly landscape of unfamiliar fields to a researcher and suggest high-impact works 
to study and potential collaborators with whom to work. Other examples of combinatorial 
innovation include medical scientists who mine literature and open data to facilitate diagnostic 
decision making in cancer treatment, and healthcare professionals who study literature to 
generate practical guidelines for wound care (Flanagan, 2004). 

More and more scientists are thinking about the translational value of their work. Sociologists 
apply the social concept of structural hole to understand scientific collaboration, and educators 
utilize literature as a scaffolding technique to enhance active learning. The transdisciplinary 
collaboration among material scientists, immunologists, and bioengineers has identified an 
implantable vaccine depot built from a polymer matrix that can kill cancer cells resulting in 
longer survival, which generates significant impacts on the well-being of society (Ali, Emerich, 
Dranoff, & Mooney, 2009). Publications and open datasets are ideal instruments to study the 
success of translational endeavors to further advance scientific innovation.  



Transparent Analytics 

The process of scientific endeavors, from data curation and analysis to discovery, should be 
transparent and easily accessible to every researcher so that replication can be easily done and 
the derived knowledge can be clearly interpreted (Editorial, 2009). Promoting transparency in 
science is crucial to ensure the reusability of knowledge, avoid reinventing the wheel, and make 
scientific discovery dedicated. Research, both quantitative and qualitative, is experiencing a 
methodological revolution (Moravcsik, 2014). Every researcher should make their work 
completely transparent to fellow scholars, and the process from data to conclusions should be 
interpretable and reproducible. 

In recent years, the American Political Science Association (APSA; 2012) formally established 
transparency standards for qualitative and quantitative research by reinforcing the ethical 
obligation of researchers to facilitate the evaluation of their evidence-based knowledge claims 
through data access, production transparency, and analytic transparency. APSA proposed a new 
way of citing references called “active citation,” which suggests that any citation in a scholarly 
publication should be annotated with an explanation on how the citation supports the knowledge 
claim and should include the hyperlink to an excerpt (c.a., 50–100 words) from the original 
source. These active citations can be located in a “transparent appendix” at the end of the 
document so that transparent data to conclusions for researchers are only one click away. This 
can generate a healthy scholarship by actively engaging researchers to establish rigorous research 
ethics to criticize, evaluate, and extend fellow scholars’ research. Provenance has been 
introduced to data and workflows in scientific research to provide detailed documentation to 
enable scientific reproducibility. The World Wide Web Consortium has recommended a standard 
representation for provenance in a human readable and machine understandable way (Groth & 
Moreau, 2013). Transparency must be considered essential and achieved through active citation 
and provenance to further advance transparent sciences.  

Connecting Intelligence 

Machines taking their full place at the table of data-driven discovery is a significant step; these 
new participants make possible what was unimaginable 20 years ago. With machines, it is now 
possible to systematically collect, interdigitate, analyze, and disseminate publications and data in 
ways that will greatly impact the tradition of conducting research while providing powerful new 
resources that significantly advance the progress of both theoretical and applied research. Further, 
machines can be used to discover new knowledge and afford breakthroughs in current vexing 
research questions that can only be answered through transdisciplinary innovations. 

The ever-increasing success in the application of full text indexing, taxonomies, and ontologies 
all dramatically improve the categorization and discovery of related content (Song, Han, Kim, 
Ding, & Chambers, 2013). The movie The Imitation Game has rekindled the memory of Alan 
Turing’s success of machine intelligence (You, 2015). In the current data-enriched era, it may be 
the right time to revisit machine intelligence and connect machine intelligence with human 
intelligence. The next generation of artificial intelligence researchers is proposing a new Turing 
Championship to develop machines with a deeper understanding of the world (e.g., machine 



comprehension of grammatically ambiguous sentences, machine storytelling from pictures, and 
machine “humanness” that enables non-disruptive communication between machine and human). 

The teamwork of machines and humans can make machines smarter and humans more efficient. 
The industrial revolution (mainly steam engine) bent the curve of human history and freed the 
physical muscle labor in the 19th century to allow for modern massive production. Now, the so-
called Second Machine Age will bend the curve of human history again pretty soon by freeing 
the mental labor of humans. This will trigger massive innovation to bring scientific fiction into 
reality as these innovations are not only generated by human but also machines.  

The combination of human and machine power can bring about new capabilities to compile, 
review, and mash-up related research entities and receive alerts on their activities and 
interactions, perhaps reaching a scale that was unimaginable 15 years ago. Much like the recent 
debut of driverless cars, distant scientific dreams could be realized in just a few years, 
demonstrating the power of the current data and machine progress (Brynjolfsson & McAfee, 
2014). In the new world of scholarly analytics, attention and extraction of deeply covered content 
and findings are the pathways to golden discoveries. Gradually, advances in information 
technologies, such as the advent of open access, Linked Open Data, semantic publishing, and 
open science, will make it possible to gather, annotate, and acquire related publications and other 
data sources and from those discover related content, findings, and conclusions. This could lead 
to sudden discovery of unanticipated correlations and connections within an incredibly large and 
expanding research corpus. We are working on one of the oldest and toughest challenges 
associated with the combination of computer and human intelligence. The combinatorial 
innovation of human and machine intelligence will allow us to connect the dots for things that 
have been disconnected and accomplish through research what has been unimaginable, allowing 
us to dig the canal to connect data with knowledge. 
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