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Abstract 
This paper proposes a framework to analyze the interdisciplinary collaboration in a coauthorship network 
from a meso perspective using topic modeling: (1) a customized topic model is developed to capture and 
formalize the interdisciplinary feature; and (2) the two algorithms Diversity Subgraph Extraction (DSE) 
and Constraint-based Diversity Subgraph Extraction (CDSE) are designed and implemented to extract a 
meso view, i.e. a diversity subgraph of the interdisciplinary collaboration. The proposed framework is 
demonstrated using a coauthorship network in the field of computer science. A comparison between DSE 
and Breadth First Search (BSF)-based subgraph extraction favors DSE in capturing the diversity in 
interdisciplinary collaboration. Potential possibilities for studying various research topics based on the 
proposed framework of analysis are discussed.  

1 Introduction 
Interdisciplinary collaboration which integrates theories and methodologies from different knowledge 
domains has become pervasive in modern sciences. The interactive dialogs invoked among researchers 
from different fields have inspired new knowledge and even new fields (Salter & Hearn, 1996; Palmer, 
2001; Derry, Schunn, & Gernsbacher, 2005; Lee et al., 2008). Public and private funding agencies have 
increasingly encouraged interdisciplinary collaborations that involve the integration of knowledge from 
multiple domains. Interdisciplinary scientific collaboration has also gained much attention in cognitive 
science (Derry, Schunn, & Gernsbacher, 2005), library and information science (Huang & Chang, 2011), 
social sciences (Moody, 2004), and health sciences (Lee et al., 2008). These studies have crucial 
implications in revealing the mechanism of interdisciplinary collaboration and in fostering such 
collaboration at the level of scientific policies. To study interdisciplinary collaboration, two issues need to 
be addressed: interdisciplinarity and collaboration.  

To explore interdisciplinarity, it’s natural to start with the research area or expertise of each author in 
collaboration. However, this is not a trivial task, especially when examining a massive set of co-authored 
papers. Previous studies utilized manual or semi-manual labeling to approximate the area or expertise of 
each author (Chua & Yang, 2008). Chua and Yang (2008) identified authors’ areas based on their 
department, division, center, or institution noted in the addresses. Compared to purely manual labeling, 
this method provides a relatively consistent and reproducible way of identifying a proxy for authors’ areas 
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or expertise, but the information in the addresses can only give a general idea of these details. In this 
paper, topic modeling that emerged in the field of natural language processing is adopted to approximate  
the authors’ areas or expertise. The proposed topic model in this paper is certainly not a perfect solution, 
as it cannot pinpoint exactly each author’s area or expertise. However, it is an improvement over previous 
solutions and gives a better proxy. For the purpose of brevity, we refer to the proxy of authors’ areas or 
expertise as “expertise” in the rest of the paper. Topic modeling has been widely used to extract latent 
topics from literatures (Hofmann, 1999; Blei, Ng, & Jordan, 2003). In this paper, we integrate the authors’ 
expertise into the coauthorship network. The authors’ expertise can be extracted from their papers using 
the topic model proposed in the work of Tang, Jin, and Zhang (2008). The extracted topics used to 
annotate the expertise of authors in the global collaboration network are then incorporated into our two 
proposed algorithms to generate diversity subgraphs.  

For capturing collaboration, the coauthorship network built from multi-authored publications is a widely 
used proxy (Newman, 2001a; Newman, 2001b). Previous studies have generally focused on investigating 
the global topology of the coauthorship networks at the macro level (Barabási et al., 2002; Leydesdorff & 
Wagner, 2008; Moody, 2004; Newman, 2001a, 2001b) or on ranking the influence of individual authors 
in coauthorship networks at the micro level (Liu, Bollen, Nelson, & Van de Sompel, 2005; Yan & Ding, 
2009; Yan, Ding, & Zhu, 2010). However, most of these studies have not explored collaborative 
relationships between two coauthors from the meso level by analyzing the subgraphs between two 
specific authors. The meso view of a collaboration network is a conceptual construction with subgraphs as 
the technical representation. While a micro view takes a single edge (representing coauthorship) or node 
(representing a coauthor) as the unit of analysis in a coauthorship network, a macro view computes 
topological metrics for the collaboration network as a whole. Neither the micro nor macro views can 
effectively capture a local and contextual view of how two authors collaborate. For example, in the micro 
view, a single weighted edge in a collaboration network may indicate that the two authors connected by 
the edge have co-authored five papers, while totally neglecting the fact that another coauthor was 
involved in all five papers. In the macro view, we may find that when averaged over all the pairs of 
coauthors in the global network,  each pair of coauthors would co-author  five papers, while actually one 
group of authors typically co-author one paper and another group of authors typically co-author 15 
papers. In order to address these problems, this study proposes two algorithms to generate a diversity 
collaborative subgraph based on multiple paths between two coauthors, where the meso perspective on 
scientific collaboration is explored by looking into local collaborative context between two given authors.  

Based on the expertise-annotated coauthorship network, we define the diversity subgraph and propose the 
Diversity Subgraph Extraction (DSE) algorithm for extracting the diversity subgraph between two 
specific authors from the global coauthorship network. The diversity subgraph gives a meso view of the 
interdisciplinary collaborative relationship between two authors by maximizing the amount of different 
expertise covered under the constraint on the size of the subgraph. We also propose an adapted algorithm, 
Constraint-based DES (CDSE), which can further narrow the meso perspective diversity subgraph to only 
include the paths with predefined intermediate authors. These two algorithms can extract informative 
cross-domain collaboration subgraphs between two authors from co-authorship graphs with hundreds or 
thousands of nodes. These algorithms thus help us to focus on the meaningful collaboration patterns 
without getting lost in huge graphs. 
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As seen in Figure 1, in a coauthorship network with each author labeled with his or her expertise, “John” 
and “Mary” are connected through a large number of co-authors who specialize in a number of fields 
(Figure 1a). Figure 1b is constructed to include the selection and presentation of influential and 
representative intermediate authors. We can see that the identified diversity subgraph between John and 
Mary (Figure 1b) presents a meso view of the multi-disciplinary relationship between John and Mary. 
Compared to Figure 1a, the diversity subgraph in Figure 1b is more appropriate for visualization. 

 

Figure 1. The diversity subgraph forms the set of top-k thematically-diverse paths between John and Mary. 

2 Related work 
Scientific collaboration 
Due to advances in data sources, computing facilities, and software, coauthorship analysis can now target 
large-scale networks. Researchers have investigated these networks’ graph size, largest components, 
geodesic distance, degree distribution, clustering coefficient, centrality, and k-core, as well as their 
dynamics over time. Barabási et al. (2002) studied the evolution of the coauthorship network in 
mathematics and neuroscience over an eight-year period (1991-1998) using its size and structural 
characteristics, and built a model to simulate the structural mechanisms that govern its evolution. Moody 
(2004) took advantage of variations in the global topology of the coauthorship network in sociology to 
reveal the field’s research practices in the last 30 years. Meanwhile, another class of studies has 
developed different indicators of the influence of authors/institutions/countries through analyzing 
coauthorship network properties from a micro perspective (Börner et al., 2005; Liu et al., 2005; Yan & 
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Ding, 2009) using centrality measures to analyze different levels of integration (e.g. authors, institutions, 
countries). However, few studies have provided a meso perspective on scientific collaboration networks. 
Given an individual paper, Shi et al. (2010) constructed a subgraph of citation network for papers in the 
reference list of the given paper and investigated the pattern of citing behaviors. For two specific 
coauthors, He et al. (2011) built a contextual subgraph of coauthorships between these two authors and 
analyzed the coauthoring patterns for prestigious authors. However, neither of the two studies has 
incorporated authors’ expertise into the investigation. 

Subgraph detection 
A group of related work has focused on subgraph detection. Faloutsos et al. (2004) defined the 
Connection Subgraph Problem as follows: given an edge-weighted undirected graph G, vertices s and e 
from G and an integer budget b, find a connected subgraph H containing s and e and at most b other 
vertices that maximize a “goodness” function g(H). They also proposed an electrical circuit-based 
analogy as the goodness function. Ramakrishnan (2005) adapted Faloutsos’ algorithm (2004) with 
heuristics for edge weighting that depends indirectly on the semantics of the entity and property types in 
the ontology and on characteristics of the instance data. These studies have provided useful techniques for 
detecting semantic associations, but none of previous studies have addressed the problem of detecting 
diverse subgraphs in collaboration networks annotated with authors’ expertise. 

Topic modeling 
Since the introduction of Latent Dirichlet Allocation (LDA) presented by Blei, Ng, and Jordan in 2003, 
various extended LDA models have been proposed by researchers in different domains, i the Author-
Topic model (AT) (Rozen-Zvi, Griffiths, Steyvers, & Smyth, 2004). In addition to extracting the subject 
content of the documents, the AT model can depict the research interests or expertise of authors 
simultaneously. Tang et al. (2008) proposed an extended model based on the AT model, namely, the 
Author-Conference-Topic model (ACT), which calculates the probability of a topic for a given author, the 
probability of a word for a given topic, and the probability of a conference for a given topic. Some studies 
have applied topic models to graph data mining, including community detection and evaluation (Li et al., 
2010; Ding, 2011). 

Result diversification 
Another important group of related work addresses result diversification in document retrieval. Carbonell 
and Goldstein (1998) used a linear combination of relevance and diversity as the objective function, while 
Zhang and Hurley (2008) studied it as a combinatorial optimization problem. Variations of the method 
used in Zhang and Hurley (2008) have placed a threshold on either relevance or diversity by maximizing 
one of the two. Although these studies target document search, their methods can be adapted to 
diversification in path finding. 

3 Methods 
Since the path-finding problem itself is a NP-hard problem, post-processing of the full set of results is 
unreasonable in large-scale networks. Thus heuristics-based optimization of the diversity function is 
designed herein to perform simultaneously with the process of path finding. An electronic circuit analogy 
is used to measure the strength of paths (Faloutsos et al., 2004), which can theoretically be viewed as an 
adapted version of random walk. Intuitively, this method values the path that most easily carries extensive 
information flow. 
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3.1 Topic modeling 
In order to annotate the coauthorship network, the ACT model proposed by Tang et al. (2008) is applied 
to capture authors’ expertise. Intuitively, the ACT models the following process: authors decide to write a 
paper with certain topics; according to those topics, a set of words are used to describe the study, and an 
appropriate venue is selected for publishing this paper. The input of the model is the title, abstract, or full 
text of papers, authors, and publication venues (e.g. journals, conference). The output contains probability 
distributions of author-over-topic, paper-over-topic, and conference-over-topic. Mathematically, the ACT 

model is a hierarchical Bayesian network. Fixed hyperparameters α, β, and μ (α=50/T, β=0.01, and 

μ=0.1) characterize people’s uncertainty about the parameters (i.e., θ, φ, and ψ) of prior Dirichlet 

distributions. Using Bayes’ rule and multinomial conditional distributions, the posterior distributions are 
calculated and further estimated by Gibbs sampling. The Gibbs sampling method is used to generate 
random samples from a joint distribution. It is especially applicable in situations where the joint 
distribution is not fully known or hard to deal with directly, while being easy to sample from the 
conditional distributions of a random variables subset. Gibbs sampling iteratively generates a sample of 
one variable or a subset of random variables from their conditional distribution on the current values of 
other variables in the joint distribution. Although those samples are dependent, it can be shown 
mathematically that the limit distribution of those samples is the same as the joint distribution that we 
target (Lawrence et al., 1993; Liu, 1994).  

The probability of a word given a topic φ, the probability of a conference given a topic ψ, and the 

probability of a topic given an author θ can be estimated as: 

 

 

 

in which d represents documents, w stands for words, x for author, z for topic, and c for publication venue. 

3.2 Construction of diversity subgraph 
In this section, the problems in finding the (constraint-based) subgraph formed by the set of top-k 
thematically diverse paths are formalized. We define the following two problems: (1) diversity 
optimization for connected subgraphs, and (2) diversity optimization for constraint-based connected 
subgraphs. 

3.2.1 Diversity Optimization for Connected Subgraph Problem  
Given: an edge-weighted undirected graph G with nodes labeled with classes, source s, and sink e from G. 
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Find: a connected subgraph Gs composed of the top-k paths between s and e that maximizes the diversity 
function D(Gs, k). 

More paths generally add to the diversity of the set. Thus the diversity function D(Gs, k) implies a 
competing balance between relevance and diversity, using the minimum number of paths (i.e. most 
informative paths) to cover the maximum number of different topics.  

 

Figure 2. Example of diversity optimization for connected subgraph problem. 

As shown in Figure 2, in a scientific collaboration network, we want to find the diversity subgraph 
between “David” and “John.” In this figure, we generate a subgraph with the top three paths between 
David and John according to the number of co-authors and diverse research areas. Other authors, such as 
“Steve,” “Brian,” and “Melisa.” are excluded because they have more distant or weaker collaborative 
relationships with authors in the subgraph, and their expertise is already covered by existing authors in the 
diversity subgraph. 

The DSE algorithm includes three major steps: 
 

 The pre-processing step (or candidate graph generation): in candidate graph generation, a 
smaller graph containing the source and sink vertices is created based on heuristics (e.g. node 
degree). Nodes in the general neighborhood of the source and the sink and with higher heuristic 
value are favored in the candidate graph. The candidate graph captures as many relevant nodes as 
possible, while restricting computing costs to an acceptable level; 
 

 Electrical network computation: the candidate graph is viewed as an electrical circuit. According 
to Ohm’s law and the conservation of electricity, the voltage of each node and the current of each 
edge are obtained by solving a system of linear equations. Currents carried by all the source-to-
sink paths are calculated (Faloutsos et al., 2004); and 
 

 Diversity subgraph generation: paths that carry the larger amount of current and have more new 
nodes are selected in an iterative process. In each iteration, the path that scores the highest 
marginal current per number of existing types of nodes is selected and added to the diversity 
subgraphs. 



7 
 

For candidate graph generation, the algorithm first adds the source and sink vertex of the candidate graph, 
then creates a buffer vertex set B, which stores all the adjacent vertices of nodes in the candidate graph C. 
In each iteration, the vertex with the highest degree is selected and added to the candidate graph, while all 
its adjacent vertices are added to the buffer vertex set. Once the number of vertices in the candidate graph 
reaches a given threshold, edges of those vertices from the original graph are updated. 

For electricity calculation, the voltage and current in the candidate graph are based on two basic rules of 
the electrical circuit:  

 Ohm’s law: the current through a conductor between two points is directly proportional to the 
potential difference or voltage across the two points, and inversely proportional to the resistance 
between them. It can be denoted mathematically as:  

 

 For any point in the current circuit, the amount of current that goes into the point equals the 
amount that goes out of the point, such as:  

 

It is worth noting that the weights of edges are modeled in the electricity circuit as a resistance. In this 
study, the total amount of current in a subgraph is taken as the measure of the informativeness/importance 
of the paths in the subgraph with respect to the collaborative relationship between a specific pair of 
authors. This is a good measure because the current incorporates and quantifies large amount of structural 
information. First, the current at this level has taken the length of the paths into consideration. Longer 
paths have larger resistance and are thus less favored. Second, the information flow is also included in the 
amount of current. Assuming an equal amount of information goes out from one node through each of its 
paths, the information flow quantifies the amount of information carried by one path. Thus if one path has 
many out-going branches, the information flow going through it is diluted. This can be naturally 
characterized by the current measure. Information flow does not consider the length of paths, and path 
length does not consider branching structures of paths. However, the amount of current takes both into 
consideration. 

For the diversity subgraph generation, the diversity function is defined as follows: 

 

 

where δiv is a binary coefficient, and δiv =0 if Gs does not contain nodes with the same type of vertex v, 
otherwise, δiv=1. The algorithm maximizes the marginal current per existing node type and takes both the 
diversity and informativeness of paths into consideration. The diversity function used in this paper 
balances between the strength of the path (i.e. relevance) and coverage of novel paths (i.e. diversity).  

3.2.2 Diversity Optimization for Constraintbased Connected Subgraph Problem 
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Given: an edge-weighted undirected graph G with nodes labeled with classes, source s, sink e, and 
constraint vertex c from G. 

Find: a connected subgraph Gsc composed of the top-k paths between s and e via constraint vertex c that 
maximizes the diversity function D(Gsc, k). 

For example, researcher A may want to explore the potential ways of establishing a collaborative 
relationship with a well-known expert B through a certain person C. This can be formalized as the 
problem of extracting the diversity subgraph between A and B with the current collaborator C as a 
constrained intermediate node. 

 

Figure 3. Diversity optimization for constraint-based connected subgraph problem. 

In Figure 3, suppose we want to find the subgraph between “David” and “John” via “Jones” with the 
research area “Information Retrieval.” By considering coauthors’ preferences (i.e. Jones), a subgraph 
composed of a set of top-k paths between David and John via Jones is extracted, which maximizes the 
diversity function. Figure 3 shows that all the paths go through Jones and authors with similar expertise, 
and weaker collaborations are not included in this extracted diversity subgraph. 

In this section, the problem definition and DSE algorithm are further extended to take coauthors’ 
preferences into consideration as a constraint node in order to create a constraint-based diversity subgraph 
extraction (CDSE) algorithm. A subgraph connecting the source and the constraint node and a subgraph 
connecting the constraint node and the sink are generated. These two subgraphs are further merged 
according to a merging mechanism. A node having a higher degree intermediates on more paths with a 
high current flow and hence needs to be retained. This is how the merging mechanism works: for all 
shared nodes, the node with a higher degree is retained in that particular subgraph and is discarded in the 
other subgraph. All duplicate edges are also removed. 

After merging the two subgraphs, we generate a new graph with the number of paths between k and k2. 
This merged graph is seen as a new candidate graph. The voltages and current are recalculated. Using the 
DSE algorithm, the subgraph Gsc with top k paths between source node s and sink node e via the 
constraint node c is generated. 

3.3 Datasets for demonstration 
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The DSE and CDSE algorithms are implemented in an academic coauthor network extracted from the 
academic search system ArnetMiner (Tang et al., 2007; Tang et al., 2008) in the computer science field. 
The coauthor data set consists of 640,134 authors and 1,554,643 coauthor linkages. In the coauthorship 
network, nodes represent authors and edges represent coauthorship weighted by the number of co-
authored papers. The edge weights are taken as the inverse of the resistor in the electrical network 
computation in the experiments. Additionally, the titles of about 230,000 papers associated with those 
authors are used as input for the ACT model, which generates a probability distribution over topics for 
each author and a set of representative words for each topic. Hot topics include natural language 
processing, Semantic Web, machine learning, support vector machines, and information extraction. For 
each author, the topic in which he/she has the highest probability is taken as his/her expertise label. 

4 Results 

4.1 Diversity subgraph Extraction (DSE) Algorithm 
For the coauthorship network, two use cases of diversity subgraphs between prestigious researchers are 
provided. Figure 4 shows the diversity subgraph between Jiawei Han (expert in data mining) and James 
Hendler (expert in Semantic Web) and Table 1 presents the top-ranked path in Figure 4. Authors in Figure 
4 specialize in 19 different subject areas. Figure 4 sketches the various interdisciplinary collaborations 
between Jiawei Han and James Hendler, including data mining, machine learning, Semantic Web, and 
ontology engineering. 

 

Figure 4 Thematically diversity subgraph between Jiawei Han and James Hendler. 

As shown in Table 1, paths containing coauthors with stronger collaborative relationships are ranked 
higher by current. Shorter paths generally rank higher than longer paths. 
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Table 1. Ranking of paths in the subgraph between Jiawei Han and James Hendler. 

Paths Current 
James HendlerV. S. SubrahmanianLaks V.S. LakshmananJiawei Han 0.0042627
James HendlerV. S. SubrahmanianNicola LeoneLaks V.S. Lakshmanan Jiawei 
Han  

0.0092124

James HendlerQiang YangDavid TaniarPhilips Yu Jiawei Han 0.0048753
James HendlerTetsuya HiguchiYong LiuGang Liu Jiawei Han 0.0043287
James HendlerRiichiro MizoguchiHiroshi MotodaVipin KumarJiawei Han 0.0031634
 

 

Figure 5. Thematically diversity subgraph between Tim Berners-Lee and James Hendler. 

Figure 5 shows the diversity subgraph between Tim Berners-Lee and James Hendler (both experts in 
Semantic Web and World Wide Web). The authors presented in this subgraph are distributed over 18 
different subject areas, including Semantic Web, data mining, information retrieval, and ontology 
engineering.  

Table 2. Ranking of paths in the subgraph between Tim Berners-Lee and James Hendler. 

Paths Current 
Tim Berners-Lee James Hendler 1 
Tim Berners-Lee  Wendy Hall James Hendler 0.611008 
Tim Berners-LeeWendy HallDavid De Roure Geraldine Fitzpatrick Steve 
BenfordAllison DruinJames Hendler 

0.0133855 

Tim Berners-LeeWendy Hall David De Roure Chris GreenhalghSteve 
BenfordAllison Druin James Hendler 

0.0100913 

Tim Berners-LeeWendy HallDavid De Roure Tom RoddenSteve 
BenfordAllison Druin James Hendler 

0.007547 
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Table 2 shows the most informative and diverse paths between Tim Berners-Lee and James Hendler. It is 
reasonable that the direct collaboration between these two authors ranks highest. Notably, Wendy Hall 
exists in four of the top five diverse and informative paths. This is due to the fact that Tim Berners-Lee 
and Wendy Hall as well as James Hendler and Wendy Hall both have close and strong collaborations. The 
large amount of current carried through these edges is so overwhelming that multiple paths with Wendy 
Hall are continuously added to the diversity subgraph.  

4.2 Constraintbased Diversity subgraph Extraction (CDSE) Algorithm 
Constraint-based subgraphs advance the DSE algorithm by taking coauthors’ preferences into 
consideration as a constraint node in the path. For the coauthorship network, two use cases of diversity 
subgraphs between prestigious researchers are provided. Figure 6 shows the constraint-based subgraph 
between Eugene Charniak (expert in natural language processing) and Steffen Staab (expert in Semantic 
Web) with Susan Dumais (expert in information retrieval) as the constraint node. This diversity subgraph 
involves 19 different subject areas involving natural language processing, Semantic Web, and knowledge 
management (Table 3). 

 

Figure 6. Constraint-based subgraph between Eugene Charniak and Steffen Staab with constraint on Susan Dumais. 
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Table 3. Ranking of paths in the subgraph between Eugene Charniak and Steffen Staab with constraint on Susan 
Dumais. 

Paths current 
Eugene Charniak Terry Winograd  Pat Hanrahan Maneesh Agrawala 
Mary Czerwinski Susan DumaisChengxiang ZhaiTim FininSteffen 
Staab  -  

0.0302355 

Eugene Charniak Terry Winograd Takeo Igarashi Maneesh Agrawala 
Mary CzerwinskiSusan DumaisChengxiang Zhai Anupam Joshi 
Steffen Staab 

0.0302355 

Eugene Charniak Terry Winograd Takeo Igarashi Maneesh Agrawala 
Mary Czerwinski Susan Dumais Chengxiang Zhai Tim FininSteffen 
Staab 

0.0302355 

Eugene Charniak Terry Winograd  Pat Hanrahan Maneesh Agrawala 
Mary Czerwinski Susan Dumais Chengxiang ZhaiAnupam Joshi 
Steffen Staab 

0.0302355 

Eugene Charniak Terry Winograd Hector Garcia-Molina Johannes Gehrke 
Prabhakar Raghavan Susan Dumais Chengxiang Zhai Anupam Joshi 
Steffen Staab 

0.015775 

 

Figure 7 shows the thematically diversity subgraph between Jiawei Han and Tim Berners-Lee with James 
Hendler as the constraint node. Table 4 presents the top-ranked paths between Jiawei Han and Tim 
Berners-Lee with James Hendler as the constraint node. 

 

Figure 7. Constraint-based subgraph between Jiawei Han and Tim Berners-Lee with constraint on James Hendler. 
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Table 4. Ranking of paths in the subgraph between Jiawei Han and Tim Berners-Lee with constraint on James 
Hendler.  

Paths current 
Tim Berners-LeeJames HendlerV. S. SubrahmanianLaksv. S. 
LakshmananJiawei Han 

0.0652928 

Tim Berners-LeeJames HendlerQiang YangHongjun LuJiawei Han  0.0513285 
Tim Berners-LeeJames HendlerQiang YangBing LiuJiawei Han 0.0427738 
Tim Berners-LeeJames HendlerQiang YangKe WangJiawei Han 0.0427738 
Tim Berners-LeeJames HendlerQiangY angJian PeiJiawei Han 0.0427738 
 

5 Discussion 
In this section, the proposed DSE algorithm is evaluated against the BFS-based subgraph extraction to 
quantify the performance of DSE in capturing the diversity in interdisciplinary collaboration. 
Additionally, limitations of the proposed framework are discussed. 

Evaluation 
The DSE algorithm forms the core part of our proposed methods. In this section, the DSE algorithm is 
evaluated against Breadth First Search (BFS) by comparing the diversity of expertise of the resulting 
subgraphs. The top 25 authors in our dataset are selected based on their citation counts. There are 300 
possible ways of pairing them. For each pair of authors, a diversity subgraph is extracted from the 
proposed DSE algorithm and a baseline subgraph is retrieved using the BFS.  The baseline subgraph for a 
pair of authors consists of all the paths that connect the pair of authors. In order to quantitatively access 
the proposed algorithms, a diversity index, defined as the fraction of the number of covered topics over 
the graph size, is used to quantify the diversity level of a subgraph. The following formula gives us a 
measure of the diversity level of a subgraph S: 

, 

|S| is the number of nodes in the subgraph, and |Stype| is the number of types covered in the subgraph. The 
difference index between the diversity levels of two subgraphs S1 and S2 is calculated by the following 
formula: 

 

The side-by-side box plots for the diversity index for BFS-based subgraphs, the diversity index for DSE-
based subgraphs, as well as the difference index comparing DSE to BFS are shown in Figure 8. As seen 
in Figure 8, the median diversity index for BFS-based subgraphs is lower than that of DSE-based 
subgraphs; and the median difference index and the difference indexes for the bulk of cases are above 
zero (dented line) in comparing DSE to BFS. These indicate that diversity subgraphs cover a relatively 
larger number of topics based on the relatively smaller size than those covered by baseline subgraphs. We 
perform a two-sided paired t-test on the diversity indexes for the two types of subgraphs, the diversity 
subgraph and the baseline subgraph, wherein:   
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 The null hypothesis is that the mean diversity index in baseline graphs is the same as that of 
diversity subgraphs; and 

 The research hypothesis is that the mean diversity index in baseline graphs is less than that of the 
diversity subgraphs. 

The p value for this test is less than 0.001 and the corresponding 95 percent confidence interval for the 
estimated difference of average diversity index in DSE and BFS is [0.047, 0.076], indicating that we can 
reject the null hypothesis and conclude that the diversity index is significantly less than that of the 
diversity subgraph. A second one sample t test is also conducted to test the null hypothesis that the 
difference index is equal to 0 versus the alternative hypothesis that the difference index is not equal to 0. 
The resulting p value is less than 0.001 and the mean difference index is 0.140 with a 95 percent 
confidence interval [0.107, 0.165], suggesting that the average diversity index increases 14.0 percent  
comparing DSE to BFS. In our experiment, the proposed diversity subgraph thus carries richer 
information on the thematic diversity with smaller size than the corresponding BFS subgraph. 

 

Figure 8. Side-by-side boxplot for diversity indexes of DSE and BFS as well as the difference index between DSE 
and BFS 

Limitations 
Limitations of our study include:  

 The proposed algorithms contain several approximation procedures, one of which is to use a 
smaller candidate graph for electric calculation instead of the real global graph. Although we 
control for bias through generating a customized candidate graph for each inquiry on author pairs, 
the artificial distortion that these procedures might bring to the results is not yet evaluated; 
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 A non-trivial task of applying the proposed algorithms to a new dataset is determining how to 
select or adjust the input parameters, including the measure of relevance in forming a candidate 
graph, and the size threshold of the candidate graph. We do not provide a detailed guideline 
herein on how to select those parameters. But simply speaking, the selection of the measure of 
relevance depends on the question of interest. The size threshold of the candidate graph depends 
on the tradeoff between the density of the graph and the available computing power;  and 

 There is no gold standard against which we can quantify and assess the diversity of the diversity 
subgraphs. Large-scale experiments on datasets from different application areas are thus needed 
to evaluate the effectiveness of the proposed algorithms. 

6 Conclusion 
The major contribution of this paper is to propose a novel framework of analyzing interdisciplinary 
collaboration, which provides an inspection of coauthorship network from an interdisciplinary angle and 
reveals previously hidden patterns in coauthors’ expertise. We define the problem of thematically 
extracting diversity subgraphs in collaboration networks herein and propose an algorithm for thematically 
detecting diversity subgraphs between two authors. Furthermore, we extend the algorithm to take into 
consideration authors’ preferences in the form of a constrained intermediate node along the paths between 
two nodes. The diversity subgraph presents a meso view of the multi-disciplinary collaborative 
relationships between a pair of coauthors. 

This paper integrates authors’ expertise obtained from topic modeling into the analysis of scientific 
collaboration and defines the diversity graph, which presents a meso view of multi-disciplinary 
collaborative relationships for a pair of coauthors. With advances in modern science, more and more 
research issues require complementary knowledge and skills from different scientific disciplines. 
Presenting the expertise associated with authors in collaborative relationships may shed light on specific 
features of cross-domain collaboration.  

We develop algorithms for extracting the diversity subgraph from the global coauthorship network and 
apply the algorithms in a large coauthorship network in computer science. The algorithms are evaluated 
against the BFS. Compared to the subgraphs produced by the BFS, the DSE/CDSE algorithms capture 
more diversity with fewer nodes. Our future work can be expanded to include the thematically diversity 
subgraphs between more than two nodes and the consideration of more complex constraints that are 
defined by coauthors. Our approach only investigates a snapshot of the coauthorship network, 
disregarding rich information on the dynamics of those graphs, which may also lead to a future research 
topic. Future developments of the proposed methods can be applied in a variety of domains, such as 
identifying a connection between a drug and a target in cheminformatics or bioinformatics, and locating a 
meaningful subgraph between two journals or two papers in scholarly communications, given the interests 
in analyzing the diversity of subgraphs of two nodes. 
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