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Measuring the Diffusion of an Innovation: A Citation Analysis 

Abstract 

Innovations transform our research traditions and become the driving force to advance 

individual, group, and social creativity. Meanwhile, interdisciplinary research is increasingly 

being promoted as a route to advance the complex challenges we face as a society. In this 

paper, we use Latent Dirichlet Allocation (LDA) citation as a proxy context for the diffusion 

of an innovation. With an analysis of topic evolution, we divide the diffusion process into five 

stages: testing and evaluation, implementation, improvement, extending, and fading. Through 

a correlation analysis of topic and subject, we show the application of LDA in different 

subjects. We also reveal the cross-boundary diffusion between different subjects based on the 

analysis of the interdisciplinary studies. Results show that as LDA is transferred into different 

areas, the adoption of each subject is relatively adjacent to those with similar research 

interests. Our findings further support researchers’ understanding of the impact formation of 

innovation. 

Introduction 

An innovation is defined as an idea, practice, or object that is perceived as having new 

values by an individual or other unit of adoption (E. M. Rogers, 1962). Innovations are 

complex, uncertain, disorderly, and subject to change (Kline & Rosenberg, 1986). Widely 

seen as the driving force of economic growth and social creativity, these advancements are a 

central plank of national and local policies and consume billions of dollars of investment 

worldwide. In both academic and practitioner communities, it is commonly perceived that 

organizations should innovate to be effective, or even survive. 

Diffusion is the process by which an innovation is communicated through certain 

channels over time among the members of a social system (E. M. Rogers, 1962). The value of 

innovation can only be reflected in the adoption and diffusion processes. For scientific 

research, diffusion of innovations is particularly important. Because scientific innovation is 

very difficult and time consuming, such as the invention of drugs requires a combination of 

many skills and a long period of repeated experiments. Without effective adoption and 

diffusion, research achievements will lose their value and do not fully come into play. So 

understanding the diffusion of innovations is central to promoting new ideas, bringing 

necessary progress, and staying competitive.  

When an innovation has obvious advantages, it is not always diffused and adopted 

rapidly, however. For example, the diffusion of hybrid seed corn in Iowa led to an agricultural 

revolution in farm productivity during the 1930s to 1950s. But only two of 259 farmers in one 

study (Ryan & Gross, 1943) had adopted hybrid corn during this period (1928 to 1941). If 

innovations can be adopted sooner and diffuse faster, our economic conditions and living 

environments may improve dramatically. In order to foster promotion and strengthen 

competitiveness, it becomes important to understand the diffusion of innovations. 



Citations of academic publications document the diffusion process and trajectory of 

innovation. As Latour (1987) argues that citations from a paper reinforce its arguments and 

connect it to an intellectual lineage. It also may indicate existing knowledge upon which the 

current publication builds (Cole, 2000). Although scholars have continually investigated 

questions about the diffusion of innovations, such as the process of diffusions (Chatterjee & 

Eliashberg, 1990; Hagerstrand, 1967), the rate of idea adoption (Abrahamson & Rosenkopf, 

1997; Mintrom & Vergari, 1998), and the decision-making process in the diffusion of 

innovations (E. M. Rogers & Shoemaker, 1971), most data are collected via semi-structured 

interviews and surveys used for descriptive purposes, which is a limited approach that has 

bias. With large-scale citation data, we can quantitatively analyze the scientific diffusion of 

innovation, where publications and citations provide especially good footprints to trace the 

pathway of scientific and technical progress.   

Cross-disciplinary knowledge flows are often constructed when one discipline cites 

another. A citation issued by a biology research article to a chemistry field work can be 

defined as a cross-disciplinary citation. This kind of citations contains a wealth of detailed 

empirical data on the diffusion of knowledge. As Desouza (2009) argues that diffusion and 

implementation of innovations require knowledge and the ability to apply that knowledge in 

novel ways and across a variety of disciplines. For instance, Latent Dirichlet Allocation 

(LDA) is a topic model and was first proposed in Computer Science field in 2003 (Blei, Ng, 

& Jordan, 2003).When it is introduced into other disciplines, the original algorithm can be 

upgraded and reconstructed into new models (Wang et al., 2011) or be used for solving a new 

problem (Au Yeung & Jatowt, 2011). The exchanging and recombination process of concepts in 

these cross-disciplinary knowledge flows show us how innovative ideas and technologies 

from different areas can be adopted, integrated, and ameliorated.  

In this paper, we quantitatively measure the diffusion of a particular innovation, building 

on previous work that defines the trail of progress in terms of citations. With a case study of 

the evolution of LDA, we demonstrate the sequence and progress of the growth of innovation, 

explore the patterns of applying or improving innovative ideas, and reveal the cross-boundary 

knowledge flow between different subjects.  

Literature Review 

Diffusion process of innovations 

Rogers popularized the diffusion of innovations theory, where he synthesized studies from 

over 500 diffusion studies across numerous fields in his seminal book (1962). During 1970s, 

the theoretical model gradually integrated the organizational changes and innovation diffusion. 

The Stage theory model, which suggests that innovation adoption goes through various stages 

that require discipline-specific strategies, became the primary model to describe the 

phenomenon of innovation diffusion (Cooper & Zmud, 1990; Kwon & Zmud, 1987; Lewin, 

1947; McFarlan, McKenney, & Pyburn, 1983). These Stage models tend to view this process 

as linear and sequential, whereas in practice it is more likely to be iterative and recursive (Saren, 

1984). For example, Rogers (1962) proposed five stages, including agenda-setting, matching, 

redefining/restructuring, clarifying, and routinizing, where later stages in the innovation 



process cannot be undertaken until earlier stages have been completed. Kwon and Zmud (1987) 

proposed that IT implementation follows six-stages, including initiation, adoption, adaptation, 

acceptance, routinization and infusion. There are also many studies attempt to discover which 

stages in the development process or features of a new product are most critical to achieving market 

success and wide adoption (Henard & Szymanski, 2001). In a recent study, Yasir Mehmood et al. 

(2016) proposed a stochastic framework for modeling user adoption and different stages of 

innovation diffusion. Continuing with Roger's theory, their model explained the propensity of 

new projects to spread through the population and the rate at which adoption occurs at various 

stages.  

Meanwhile, mathematical modeling of innovation diffusion researches confirmed the 

existence of a statistical bell shaped curve for the frequency of adoption plotted against time, 

and a S-shaped curve for the cumulative number of adopters. Several diffusion models have 

been proposed to study the diffusion phenomenon, such as, the internal logistic curve 

influence model (Mahajan & Muller, 1979), the internal influence model (Mansfield, 1961), 

and the Bass model (Bass, 1969). The Bass model characterizes the diffusion of an innovation 

as a contagious process that is initiated by mass communication and propelled by word-of-

mouth. The model is widely used in market analysis and demand forecasting of innovation 

diffusion in various areas. 

With the increase of social network data, diffusion researches have moved their focus onto 

the relationship between the entities that are diffused(Goyal, Heidari, & Kearns, 2013; J. Tang, 

Sun, Wang, & Yang, 2009; Weng, Flammini, Vespignani, & Menczer, 2012), as well as the role of 

individual users through the diffusion process of innovation in a network(Backstrom, L., 

Huttenlocher, D., Kleinberg & Lan, 2006; Rong & Mei, 2013; Ugander, Backstrom, Marlow, & 

Kleinberg, 2012). For example, Montanaria and Saberib  (2010) found that innovation spreads 

quickly in locally connected networks and high-degree nodes slow down the diffusion 

process. Rong and Mei (2013) regard algorithms in computer science as the nodes of an 

innovation network and citations as links to study two different interrelationships among 

innovations (competition and collaboration) affect users’ adoption behavior. The limitation of 

these studies is that they cannot reveal the evolution process of the innovation only by modeling 

the cumulative number of adoption. 

Cross-disciplinary knowledge flows 

Cross-disciplinary knowledge flows are specifically associated with the co-occurrence of 

innovation diffusion (e.g. some of the domain-specific methods are introduced into new 

disciplines, original concepts are reassembled and new knowledge is generated). As argued 

by Kusiak (2016, p. 255), “A building block of innovation science is connecting seemingly 

unrelated ideas. We are flooded with discoveries in isolated domains. Making quick 

connections between, for instance, biology and technology, could lead to bigger ideas and 

redirect research and development.”  

Generally considered as the indictor of knowledge flow, citations are often adopted to 

examine patterns of dynamic disciplinary knowledge production and diffusion (Cronin & 

Meho, 2008; Kiss, Broom, & Rafols, 2009; Levitt, Thelwall, & Oppenheim, 2011; Yan & Yu, 

2015; Zhao & Wu, 2014). Using citation analysis, studies have found that scientific works in 



one discipline tended to cite publications from adjacent disciplines(Leeuwen & Tijssen, 2000) 

and citations to publications of the own discipline occurred sooner than citations to papers in 

other disciplines (Rinia, Leeuwen, Bruins, & Vuren, 2001). When looking at specific areas of 

research, it is found that a few library and information science journals heavily cited 

communication science journals (Borgman & Rice, 1992) and journal knowledge flows in 

library and information science is frequent (Zhao & Wu, 2014). Similarly, Leydesdorff and 

Probst (2009) revealed that communication science journals have a strong connection with 

political science and social psychology journals. 

Another thread of citation based knowledge diffusion studies use citation data to explore 

the knowledge path cross various disciplines. For example, using part of the Journal Citation 

Index data from 1969, Narin et al. (1972) proposed a cross-field model that utilizes the 

relationships between journal citations. They found that the fields of science and nature function 

as a link for physics and biology, and there is a knowledge path through the fields of biology – 

biochemistry – chemistry – physics – mathematics. Rorissa and Yuan (2012) use citation data 

for 10 years (2000–2009) and find top five disciplines that contribute to information retrieval 

are computer science, library and information science, engineering, telecommunications, and 

management. Yan and Yu (2015) built a discipline-level citation network based a journal-to-

journal citation matrix for all journals and proceedings indexed in the Scopus database with a 

2-year citation window. They used MST (Maximum Spanning Tree) algorithm to find 

knowledge paths and found that Medicine served as the largest exporter of knowledge and 

several STEM connected paths (e.g. Medicine - Biochemistry – Agriculture Sciences – 

Environmental Science and Medicine – Biochemistry – Chemistry – Materials Science – 

Physics – Earth and Planetary Science). 

Citation-based innovation diffusion 

Based on the assumption that authors cite the works that influence them, some studies 

have specially used citation as a proxy for innovation diffusion. Jaffe and Trajtenberg (1996), 

for example, use citations of all United States patents granted since 1963 to measure the 

diffusion of knowledge on the geographic portrait. The results show that patents granted to 

United States inventors are much more likely to cite previous United States patents than are 

patents granted to inventors of other countries. Mowery and Ziedonis (2002) interpret patent 

citations as measures of the importance of the contribution to inventive knowledge and find 

higher citation rates among patents originating from university labs.  

Indeed, citations cannot represent directly adoption of innovation and scientists have 

pointed to a number of concerns about citation analysis, including biases in citation patterns, 

motivations to cite that extend beyond intellectual influence, wrong or misleading citations, 

variation between specialties, and authors’ ignorance of some relevant literature (MacRoberts 

& MacRoberts, 1996). Edge (1979) also maintains that publication citations only capture the 

influence of other formal publications, ignoring informal communications and tacit 

knowledge that may be far more important as influences. However, the data from citation-

based approaches still have much more advantages for innovation diffusion research 

comparing with the data gathered from conventional approaches, including interviews, 

questionnaires, and in-depth case studies, and also social network data. 

First of all, citations are with high quality and credibility after peer review which means 



the publications get admitted by the scientific community. Second, citations are easily 

accessible in electronic form for revealing the content of the diffusion process. As Small 

(1978) argues that citations are considered as part of the cognitive process of producing 

written discourse. Moreover, publications are linked to inventiveness and contain a trace of 

what knowledge they build upon through the citation of prior art. Last of all, the traditional 

method can only collect data for a period of time with a small number of sample. But citation 

is a cumulative number and the duration is very long, so we can map the entire diffusion 

process of the innovation. 

Citations have become intellectual linkages across academic and professional disciplines 

and can be used to study the nature and the development of different domains (Zhang, Ding, & 

Milojević, 2013). Tang (2004) use citation analysis to study the scholarship maturity of LIS 

and find that LIS is a highly interdisciplinary field that exchange knowledge with a variety of 

disciplines from the domains of science, social science, and the humanities. They also find 

identified the most common disciplines to which LIS exports ideas: computer science, 

communication, education, management, business, and engineering. Consisted with this 

research, Cronin and Meho (2008) also found IS has become successful exporter of ideas. By 

analyzing interdisciplinary bridges between pairs of disciplines. Levitt et al. (2011) found that 

library and information science grew the fastest in interdisciplinarity between 1990 and 2000 

among all social science fields. Yan (2015) found that the subjects of chemical engineering, 

energy, and environmental science have the fastest growth. 

In summary, previous studies have been more concerned about offering a quantitative 

proxy of the diffusion of innovations and generally do not consider how innovations are 

adapted and improved over time. In this study, we choose LDA as a research instance and 

reveal the diffusion process of LDA by analyzing its citation history. The citations we identify 

not only show the trajectory of the innovative idea diffusing and evolving, but also reveal the 

knowledge flows across disciplines. 

Methodology 

Dataset 

Latent Dirichlet Allocation (LDA) is a generative probabilistic model used for clustering 

sets of discrete data (Blei, Ng, & Jordan, 2003). Due to its scalability and meaningful results, 

LDA has become an important tool for scientific research as well as many academic and 

business fields, such as sentiment analysis (Pang & Lee, 2008), image retrieval (Hare, Lewis, 

Enser, & Sandom, 2006), and social network analysis (Mccallum, Wang, & Corrada-

Emmanuel, 2005). According to Scopus, the citation of LDA has reached more than 6,800 in 

2015. Because of the large number of citation and a wide range of application types, we 

choose LDA’s citations in the case study.  

Although Google Scholar tends to have the most comprehensive data on journals and 

proceedings, it can’t show the full dataset because of its search mechanism. Only part of the 

citation data can be achieved and the quality of the dataset is not carefully controlled like 

commercial databases. Scopus includes a more expanded spectrum of journals than PubMed 

and Web of Science (Falagas, Pitsouni, Malietzis, & Pappas, 2008; Klavans & Boyack, 2009; 



L Leydesdorff & Moya-Anegón, 2014; Meho & Yang, 2007). The search result of citation 

number of LDA is 6,822 in Scopus and only 3,797 in Web of Science between 2003 and 

2015. So in this study, we use LDA citation extracted from Scopus.  The citations are taken 

from articles, review articles, and proceeding papers published between 2003 and 2015, and 

the metadata contains title, abstract, year, authors, and keywords.  

Academic disciplines are simply particular branches of knowledge and taken together 

they form the whole or unity of knowledge that has been created by the scientific 

endeavor(Krishnan & Krishnan, 2009). Many studies choose to use Subject Categories to 

represent scientific disciplines and to study knowledge flow and diffusion (L Leydesdorff & 

Rafols, 2009; Rafols & Leydesdorff, 2009; Yan, 2015a). Scopus uses journal-to-journal 

citation data to predefine its own journal classification schema—ASJC (All Science Journals 

Classification).  According to the journal’s assigned subject, a paper is typically associated 

with one or more subjects and these, in turn, are grouped into one of the four subject areas: 

Life Sciences, Social Sciences, Physical Science, and Health Sciences. In this study, we use 

subject as a proxy as the discipline and focus on the analysis of the diffusion process of LDA. 

TABLE 1. LDA’s Citation Distribution in each Subject Area 

Subject 

Areas 
Subject 

Number of 

Citations  

Subject 

Areas 
Subject 

Number of 

Citations 

Physical 

Sciences 

Computer Science 5576 

Social 

Sciences 

Social Sciences 638 

Engineering 1374 Decision Sciences 365 

Mathematics 1320 Arts and Humanities 326 

Physics and 

Astronomy 
105 

Business, Management and 

Accounting 
250 

Earth and Planetary 

Sciences 
72 Psychology 55 

Material Science 46 
Economics, Econometrics and 

Finance 
19 

Environmental 

Science 
25 

Life 

Sciences 

Biochemistry, Genetics and 

Molecular Biology 
131 

Chemical 

Engineering 
8 Neuroscience 111 

Chemistry 8 
Agricultural and Biological 

Sciences 
55 

Energy 3 
Immunology and 

Microbiology 
8 

Health 

Sciences 

Medicine 209 
Pharmacology, Toxicology 

and Pharmaceutics 
4 

Health Professions 50 
Multidisciplinary 36 

Nursing 4 

(a) Subject Area Classification by Scopus 

numbers of subject 1 2 3 4 5 6 7 Total 

Number of papers  3758 2395 502 99 61 6 1 6822 

(b) Number of papers (row 2) assigned to different numbers of subject (row 1) 

There are a total of 6,822 citations that cited LDA from 2003 to 2015. These citations 

have been assigned to 25 subjects according to Scopus’ ASJC (All Science Journals 

Classification). The largest subject is Computer Science with 5,576 articles, followed by 

Engineering. Energy gets the smallest number of papers, with three articles.  



The numbers of papers that are associated with different numbers of subjects are 

illustrated in Table 1(b). Unlike the subject area “multidisciplinary” which is predefined by 

Scopus, in our study, an interdisciplinary study is considered as a paper signed into two or more 

subjects. The numbers of papers that are associated with different numbers of subjects are 

illustrated in Table 1(b). It shows that up to 55 percent (3758/6822) of papers are associated with 

one major subject and up to 45 percent (3064/6822) are interdisciplinary studies. One paper, 

“Negative Example Selection for Protein Function Prediction: The NoGO Database” 

(Youngs, Penfold-Brown, Bonneau, & Shasha, 2014, published by PLoS Computational 

Biology(Youngs, Penfold-Brown, Bonneau, & Shasha, 2014), is associated with seven 

subjects: Computer Science, Mathematics, Medicine, Biochemistry, Genetics and Molecular 

Biology, Neuroscience, Agricultural and Biological Sciences, and Environmental Science. 

To illustrate the relationships between different subjects, we build a two-mode network 

based on links of paper-subject (Figure 1) consisting of 6,822 articles and 25 subjects. Each 

article belongs to one or more subjects, where the size of the label for each subjects is 

determined by the number of associated articles. For the visualizations, we use Gephi (M. 

Bastian, S. Heymann, 2009) to construct the network and apply Hu’s (2005) layout method to 

map the network structure.  

 

FIG. 1. Paper-Subject Network for LDA Citations 

Methods 

To reveal the diffusion process of LDA, a three-step approach is employed. The first step 



examines the topic evolution in the whole citation history of LDA to answer questions about 

which research topic attracts the most attention and what topics have been proposed during 

the process of adopting LDA. In order to understand the chronological order of the adoption 

of LDA in different subjects, the second step builds the subject-topic matrix and then extracts 

the most relevant topics for each subject. The third step proposes a keyword extraction 

method to analyze the concept exchange and recombination in the interdisciplinary 

researches, which gives us a deeper look into the interdisciplinary bridges where innovation 

can be found. These efforts provide a dynamic and comprehensive understanding of the 

diffusion of LDA. 

Titles and abstracts of LDA citations are pre-processed: (1) All words are converted to 

lowercase and the plural changed its singular form; and (2) A stop word list is used to filter 

the common words, and words that have fewer than three letters are removed. 

Topic modeling. The LDA topic discovery model (Blei, Ng, & Jordan, 2003) is an 

unsupervised algorithm for performing statistical topic modeling using a “bag of words” 

approach that treats each document as a vector of words. Each document is represented as a 

probability distribution over certain topics, where each topic is a probability distribution of 

words.  

With a corpus of 𝑀 documents {𝑤1,𝑤2, … 𝑤𝑚} containing words from a vocabulary of 𝑁 

terms, LDA assumes that documents are generated from a set of 𝐾 latent topics. In a 

document, each word 𝑤𝑖 is associated with a hidden variable 𝑧𝑖 ∈ {1, … , 𝐾} indicating the 

topic from which 𝑤𝑖 is generated. The probability of word 𝑤𝑖 can be expressed as: 

𝑃(𝑤𝑖) = ∑ 𝑃(𝑤𝑖|𝑧𝑖 = 𝑗)𝑃(𝑧𝑖 = 𝑗)

𝐾

𝑗=1

 

where 𝑃(𝑤𝑖|𝑧𝑖 = 𝑗) = 𝛽𝑖𝑗  is a probability of word 𝑤𝑖  in topic 𝑗  and 𝑃(𝑧𝑖 = 𝑗) = 𝜃𝑗  is a 

document-specific mixing weight indicating the proportion of topic 𝑗 in the document. 

The multinomial parameters 𝛽 and 𝜃 are sampled respectively as latent random variables 

from a Dirichlet prior with parameters α and η. Each document is obtained using the 

following generative process (Figure 2): (1) Sample a K-vector 𝜃 of document specific 

mixing weights from the Dirichlet distribution 𝑃(𝜃|α); and (2) For each word, sample topic 

assigns 𝑗 according to mixing weights 𝑃(𝑧) = 𝜃 and draws a word according to 𝑃(𝑤|𝑧) = 𝑗. 



 

FIG. 2. Graphic Model Presentation of LDA 

The Gensim library is used for the LDA topic modeling (Řehůřek & Sojka, 2010), where 

we apply standard parameters provided by Gensim (alpha='symmetric', eta=None, decay=0.5, 

eval_every=10, iterations=50, gamma_threshold=0.001, update_every=1). Considering the 

disciplinary differences in relation to the size, diversity, and duration of the current data set, 

the number of topics is set at 30 for this study. 

Topic popularity. Based on previous studies (Griffiths & Steyvers, 2004), popular 

topics are found to be those with high topic proportions among a number of articles. Topic 

popularity is calculated through 𝜃𝑑, the per-document topic proportion for document 𝑑. For 

example, as illustrated in Table 2, five papers are assigned to three topics. For each topic 𝑗, 

the popularity of topic Pop(𝑗) can be calculated through aggregating 𝜃𝑑,𝑗. 

TABLE 2. An Example of Topic Popularity for Three Topics 

 Doc 1 Doc 2 Doc 3 Doc 4 Doc 5 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 

Topic 1 0.31 0.02 0.09 0.11 0.02 0.55 

Topic 2 0.22 0.12 0.39 0.04 0.08 0.85 

Topic 3 0.01 0.80 0.22 0.03 0.43 1.49 

The topic popularity for topic 𝑗 in year 𝑡 can be expressed as: 

𝑃𝑜𝑝(𝑗|𝑡) = ∑ 𝜃𝑑,𝑗

𝑑|𝑝𝑦(𝑑)=𝑡

 

where 𝑝𝑦(𝑑) denotes the publication year of document 𝑑. 

Subject topic. With the topic distribution of each paper, we can obtain the most- related 

topic for each subject by manipulating the Paper-Subject matrix and Topic-Paper matrix. 

Figure 3 shows the way to form the Topic-Subject matrix. We define the subject topic as the 

topic with the maximum value. 



 

FIG. 3. The formation of a Topic-Subject Matrix 

Results 

Diffusion stages of an innovation 

In this section, we analyze the research topics generated from the citations of LDA. 

Table 2 lists 30 topics labeled by the top five words with the highest associations for each 

topic. These topics give us a general understanding of LDA-related researches. We further 

divide these topics into three categories:  

Technology-related topics (1 to 12), which mainly focus on LDA algorithm, evaluation, 

parameter setting, and extension/improvement; 

Application-related topics (13-23), which consist of text mining, topic modeling, 

system design, automatic translation, information retrieval, user recommendation, sentiment 

analysis, opinion mining, and image annotation; and 

Data-related topics (24-30), which include biological data, scientific data, medical data, 

image data, and social media data.  

Obviously, these three types are interrelated. For example, sentiment analysis 

(application-related) mainly uses social media data (data-related) and inextricably links with 

natural language processing (technology-related). LDA originally applied in topic modeling 

and text mining (Blei, Ng, & Jordan, 2003) is found to produce more technology-related and 

application-related derivatives.  

TABLE 3.  30 Topics in LDA Citations 
Topic ID Topic Keywords Topic ID Topic Keywords 



1 Language, Natural, Computational, Linguistics, Processing 16 Recognition, Human, Translation, Action, Crosslingual 

2 Learning, Machine, Semisupervised, Sparse, Artificial 17 Retrieval, Indexing, Correlation, Multimodal, Multimedia 

3 Supervised, Label, Classification, Generative, Discriminative 18 Community, Service, Discovery, Detection, Matching 

4 Software, Source, Code, Quality, Programming 19 Recommendation, Collaborative, Filtering, System, User 

5 Inference, Bayesian, Mixture, Probabilistic, Sampling 20 Sentiment, Prediction, Regression, Online, Forecasting 

6 Clustering, Similarity, Document, Summarization, Algorithm 21 Retrieval, Search, Query, Ranking, Relevance 

7 Matrix, Factorization, Optimization, Algorithm, Nonnegative 22 Review, Opinion, Visualization, Product, Mining 

8 Dirichlet, Allocation, Hierarchical, Statistics, Topic 23 Image, Semantic, Annotation, Segmentation, PLSA 

9 Classification, Feature, Text, Vector, Method 24 Human, Expression, Gene, Functional, Urban 

10 Network, Graph, Link, Influence, Structure 25 Scientific, Digital, Author, Paper, Citation 

11 Time, Temporal, Dynamic, Evolution, Blog 26 Video, Detection, Patterns, Activity, Behavior 

12 Semantic, Knowledge, Domain, Wikipedia, Ontology 27 User, Content, Online, Mobile, System 

13 Topic, Text, Document, Modeling, Mining 28 Media, Twitter, News, Online, Event 

14 Mining, Text, Technique, System, Processing 29 Image, Visual, Object, Scene, Feature 

15 System, Automated, Requirements, Reports, Design 30 Medical, Clinical, Health, Risk, Support 

Next, we use the topic popularity in each year (Pop(j|t)) to determine the top five 

popular topics per year, as shown in Figure 5(a). 

 

(a) Evolution of Top 5 Topics in Each Year 

 

(b) Scientific Innovation Growth Model 

FIG. 5. Diffusion Stages of Innovation 

Rogers (1962) identified five stages of the innovation diffusion process from the perspective 

of the users’ adoption decision: knowledge – person becomes aware of an innovation and has some 

idea of how it functions; persuasion – person forms a favorable or unfavorable attitude toward the 

innovation; decision – person engages in activities that lead to a choice to adopt or reject the 



innovation; implementation – person puts an innovation into use; confirmation – person evaluates 

the results of an innovation-decision already made. The weakness of this stage model is that the 

decision-making process is only part of the diffusion process and it does not show the entire 

innovation cycle, for example, innovation may change during the diffusion process. What's more, 

diffusion of scientific innovation involves cross-domain applications, which are different from 

products that have long been used to solve a particular problem/task and remain in a stable form. 

In the context of citation-based diffusion of innovation, citations represent indirect diffusion of 

innovation which means that, first, innovation has been formed, and secondly, diffusion of 

innovation can be expressed as the transmission of knowledge and not necessarily adoption, and 

finally, the form of innovation is not immutable. Based on the topic evolution of LDA and follow 

Rogers’ diffusion model (1962), we further divide the diffusion process of innovation into five 

phases, as shown in Figure 5(b): Testing and Evaluation, Implementation, Improvement, Extending, 

and Fading. 

Testing and Evaluation is the first stage of diffusion and deals principally with the assessment 

of the performance and efficiency of the innovation. In the early period of the diffusion of LDA 

(2003-2006), topics are mainly technology-related and application-related, which means that 

adopters question the performance of the innovation and use different ways to evaluate its 

algorithms and outcomes. Corresponding to knowledge and persuasion stage of Rogers’ diffusion 

model, testing and evaluation can accelerate the diffusion of innovation and help scientists in other 

disciplines understand the advantages of innovation. 

Implementation, which occurs in the early period of innovation diffusion, means that 

researchers begin to put the innovation into practical applications. In this stage, innovation is widely 

accepted by scientists in the originally proposed field and transformed into other forms to solve 

other types of problems. For instance, LDA is upgraded into Multimodal Multi-Instance Multi-Label 

LDA (M3LDA) for image annotation task(Nguyen, Zhan, & Zhou, 2013). We can also find the rapid 

growth of topic23 {Image, Semantic, Annotation, Segmentation, PLSA} and topic29 {Image, Visual, 

Object, Scene, Feature} during 2004 to 2006 in Figure 5(a). 

Extending, which plays a crucial role in the whole diffusion process, is the stage when the 

innovation is applied across the disciplinary boundary into other domains. Here, innovation has been 

recognized and trusted, and adopters are no longer skeptical about the efficiency of the innovation. 

Scientists no longer care about the technical problems of the innovation, but begin to apply the 

innovation to solve practical problems in different areas. The type of task which the innovation is 

originally designed for and the form of the innovation itself are not changed. In our case, more data-

related topics (topic 27 and topic 28) are beginning to emerge at the end of the diffusion. 

Fading shows that the original innovation is replaced by new ones, which does not occur once, 

but will constantly circulate along with the stage of implementation. This means that the process of 

innovation diffusion will not end until an enormous innovation completely replaces the existing 

methods. As shown in Figure 5(a), topic23 {Image, Semantic, Annotation, Segmentation, PLSA} 

and topic29 {Image, Visual, Object, Scene, Feature} start to decline from 2009 to 2011. This decline 

is due to neural networks gradually replacing topic modeling in these two topics (Li, Su, Xing, & 

Fei-fei, 2010). 



Improvement, which persists throughout the whole diffusion process, refers to enhancing the 

algorithms and compensating for the deficiencies (i.e. determining the number of the topics, and 

updating the existing parameters). Related to methodology improvement and optimization, topic5 

{Inference, Bayesian, Mixture, Probabilistic, Sampling} has always been an important topic in LDA 

studies. 

In this growth model, five stages of innovation diffusion exist simultaneously and attach to 

each other. In other words, when the innovation is being tested, other researchers could also apply 

it, improve it, and extend it. Note that we do not consider the stage of idea generation because our 

analysis of the growth process is based on the precondition that the innovation has already formed. 

Subject topic 

First of all, we need to figure out the key topic of each subject during the diffusion of 

LDA, that is, we identify how LDA is applied in each subject. According to the introduction 

to Topic-Subject matrix in the methods section, we extract the corresponding topic to each 

subject with the maximum value in the matrix. As seen in Figure 6, the left side shows each 

subject and the right side shows the corresponding topic, from which we can clearly verify the 

research themes of distinct areas. 

 

FIG. 6. Topics from Different Subjects (left side is subject and right side is topic) 

Physical Sciences covers all three kinds of topics: technology-related, data-related and 

application-related. On the one hand, technology-focused subjects, such as Computer Science 

and Mathematics, connect with the topic {Inference, Bayesian, Mixture, Probabilistic, 



Sampling} (technology-related). On the other hand, Earth and Planetary Science and 

Materials Science concentrate on the image annotation (application-related). Unexpectedly, 

the results show that Energy is highly related to topic {Media, Twitter, News, Online, Event}. 

When we take a close look at the original dataset, we find that there are only three Energy 

papers citing LDA and only one of them adopts LDA, in this case to extract topics in safety 

reports for maintenance action recommendation (Das, 2013). 

Medical informatics has become a big growth area with the increased collaboration 

between medicine and data mining (Quackenbush, 2006). In the Health Sciences, Medicine, 

Nursing, and Health Professions get three relevant topics, which are natural language 

processing (technology-related), medical disease (data-related), and human genes (data-

related). Some of the Health Sciences researchers apply LDA on text data directly, such as 

health checkup questionnaires (Hatakeyama et al., 2015), and others extend LDA to the 

medical study and knowledge discovery tasks. For example, Wang and Ding et al. (2011) 

described an algorithm called Bio-LDA that uses extracted biological terminology to 

automatically identify latent topics, and provides a variety of measures to uncover putative 

relations among topics and bio-terms.  

In Life Sciences (Agricultural and Biological Sciences, Biochemistry, Genetics and 

Molecular Biology, Immunology and Microbiology, Pharmacology, Toxicology and 

Pharmaceutics), the main topic is concentrated on the human genome, which refers to 

{human, expression, gene, functional, urban}. One of the emerging Life Sciences subjects, 

Neuroscience mainly focuses on machine learning-related topics, and often reveals textual 

information from the physical point of view while paying more attention to human behavior 

analysis. For example, to analyze the variations in language based on personality, gender, and 

age, Schwartz and Eichstaedt et al. (2013) used 700 million words, phrases, and topic 

instances collected from the Facebook messages of 75,000 volunteers that give a 

comprehensive exploration of language and distinguish people and finds connections that are 

not captured with traditional closed-vocabulary word-category analyses. 

Social Sciences covers the most diverse topics. Opinion mining and sentiment analysis 

are the most-related research themes. Arts and Humanities attaches importance to the natural 

language processing(NLP) in topic modeling for questions like understanding the history of  

cognition (Cohen& Austerweil, 2015); Business, Management and Accounting focuses on 

analyzing information behavior of online users; Decision Sciences gives substantial attention 

to optimization model and algorithm improvements; Economics, Econometrics and Finance 

develops the method of LDA to extract the opinions from user reviews; and Psychology 

concentrates on organizing knowledge on a semantic level. 

In multidisciplinary researches, LDA is usually used in the forecast and foresee 

applications for the evolution of science and the development of subjects. Overall, the 

corresponding topics of each subject (Figure 6) provides an in-depth understanding of the 

diffusion of innovation. 

Cross-boundary diffusion 

Interdisciplinary works give us opportunities to better understand how an innovation is 

diffused across disciplinary boundaries. Diffusion is a process that develops along the time. 

Subjects can be viewed as adopters, and the time they receive an innovation can be expressed 

in terms of the publication time of the first article citing the innovation. The first article of the 



subject is likely to be interdisciplinary, for example an article signed into subject A and B. 

When A has already referenced LDA before B appears, A can be seen as a bridge where LDA 

diffuse to B. This kind of bridge is not the same as the citation-based knowledge flow. On the 

one hand, the individual adopter of the innovation, that is, the researcher, determines the 

source of the innovation-related information. Scientists may learn LDA by reading literature, 

listening to lectures, and communicating with other scholars, so we cannot determine the 

channels by which subject receive LDA. Here, the bridge between subjects that we build 

represents the path of innovation diffusion. It is also a process of knowledge accumulating. 

On the other hand, the citation-based knowledge flows use all citations between subjects, and 

here we only focus the diffusion of LDA. 

We depict the adoption time for different subjects during LDA’s diffusion (Figure 7). If 

the first article of the subject is interdisciplinary study, we add a bridge between the signed 

subjects. Subjects are coded with colors that represent the subject areas the subject belongs to.  

 

FIG. 7. A Subject Timeline for LDA Diffusion  

Interdisciplinary researches are very important intermediary for innovation diffusion. In 

Figure 7, most of the subjects first cited LDA are through interdisciplinary research, except 

Psychology and Pharmacology, Toxicology and Pharmaceutics. LDA needs to go through the 

interdisciplinary researches to reach the subjects. In addition, subjects also play an important 

mediator role in the diffusion of LDA. Computer Science, Mathematics, Engineering and 

Biochemistry, Genetics and Molecular Biology build the major branches in this diffusion 

map. 

At the very beginning of the diffusion process, innovation spreads out towards the 

adjacent subjects. Starting from Computer Science, diffusion of LDA goes in sequence 

through Engineering, Business, Management and Accounting, Mathematics, Physics and 

Astronomy, all of which belong to the Physical Sciences. This result is also consistent with 

previous findings, that publications in one discipline tend to cite papers in adjacent disciplines 

(van Leeuwen & Tijssen, 2000). 

The distribution of the adoption time for each subject area is quite dispersed. As shown 

in Figure 7, Computer Science and Engineering are the earliest subjects to cite/adopt LDA. 



Although both Energy and Engineering belong to the Physical Sciences, they first cite LDA in 

2003 and 2013. Similarly, in Life Sciences, LDA is first adopted by Agricultural and 

Biological Sciences in 2004, and is finally diffused to Pharmacology, Toxicology, and 

Pharmaceutics in 2012. The interdisciplinary diffusion order does not therefore depend on 

whether the subjects directly belong to the same subject areas 

By combining the subject topics (Figure 6) and adoption times (Figure 7), one finds that 

the adoption times for different subjects are relatively adjacent and continuous in years when 

the subjects have similar research interests. For instance, Computer Science, Engineering, 

Mathematics, Physics and Astronomy, and Decision Science are mostly related to topic 

{Inference, Bayesian, Mixture, Probabilistic, Sampling}. Their adoption times are all 

concentrated in the period from 2003 to 2005. Similarly, Arts and Humanities, Health 

Professions, and Social Sciences, which adopt LDA in 2006 and 2007, are all interested in 

topic {Language, Natural, Computational, Linguistics, Processing}. The reason behind this 

phenomenon is that, people with similar interests are more likely to operate, communicate, 

and work together. As innovation diffuses to different disciplines, the disciplinary boundary is 

broken, and a social network with potentially strong cohesion is established between 

researchers from different disciplines. Some theories also emphasize that the evolution of 

disciplines is driven by the formation of social groups of scientists (Bettencourt, Kaiser, & 

Kaur, 2009; Guimera, Uzzi, Spiro, & Amaral, 2005; Hagstrom & Crane, 1973). 

When first using the LDA model, scientists who are unfamiliar with programming find it 

difficult to operate. The training efficiency and quality of outcomes also need to be further 

examined and evaluated. With the maturity of LDA, scientists have developed topic modeling 

software that can be used directly, such as Genism (Řehůřek & Sojka, 2010), MALLET 

(McCallum, 2002), and Stanford Topic Modeling Toolbox (2009), which help LDA diffuse to 

more disciplines. Researchers from other disciplines gradually started to apply it directly to 

different datasets, such as mining daily life activity for patients (Seiter, Derungs, Schuster-

Amft, Amft, & Tröster, 2015).  

Conclusion 

This study analyzes the diffusion of innovation by using LDA citations as a proxy. It 

highlights the diffusion stages of LDA using topic evolution and examines the cross boundary 

diffusion process between different subjects. First, a topic modeling technique is applied to 

reveal the topic evolution of innovation between subjects. We further divide the diffusion 

process of an innovation into five stages, including testing and evaluation, implementation, 

improvement, extending, and fading. The stages develop simultaneously and attach to each 

other. These findings thus contribute to the literature on the dynamic phases found in 

innovation diffusion. Also, topic-level studies are found to play a critical role in bringing 

more granular perspectives to the existing co-occurrence-based analyses. In summarizing the 

corresponding topics of each subject, from the adoption time of LDA in different subjects, 

innovation is seen to first diffuse to adjacent subjects, and then transfers along to others with 

the evolution of topics. These findings give us a better understanding of the diffusion process 

through subjects. Furthermore, interdisciplinary researches and subjects are both play an 



intermediary role in innovation diffusion.  

Here we address some limitations and future works of this study. One limitation is that 

Scopus is not expected to contain all important scholarly literature which necessarily 

underestimate the true amount of citation among a set of journals―compared with biomedical 

related disciplines, social science and humanities may still have an inequitable visibility in Scopus 

(de Moya-Anegón et al., 2007). The limited size of the dataset is also one of the shortcomings. 

Although focusing on one particular topic like LDA can give us deeper insights and closer views 

of the evolution process involved in innovation diffusion and transfers into different disciplinary 

areas, we need more cases to test our stage model’s general explanations on innovation diffusion 

regarding to other innovations. Finally, we only consider the direct citation, while ignoring the 

indirect and inner citations which can also represent the flow of knowledge. Moreover, there are 

some articles that adopt the innovation directly but are not indicated in the reference literature 

which are also implicit diffusion of innovation. In order to solve these problems, we need to use 

content-based citation analysis to restore a more complete diffusion process. Future works will 

focus on exploring factors that contribute to topic dynamics and discovered patterns of the 

diffusion of innovation. This requires further analysis of the background and context of the 

citations (e.g. social network of the authors, and the papers’ full text) and identifying how LDA 

was adopted, transferred, and improved during its diffusion phases. 
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