
Innovation or Imitation: The Diffusion of Citations 

Chao Min 

School of Information Management, Nanjing University, #163 Xianlin Avenue, Nanjing, Jiangsu, 

China, 210023; 

School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47405, 

USA. 

Telephone: +86-15951813844 

E-mail: chaomin@iu.edu 

 

Ying Ding 

School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, 

USA; 

School of Information Management, Wuhan University, Wuhan, Hubei, China, 430072; 

University Library, Tongji University, Shanghai, China, 200092. 

Telephone: (812) 855-5388 

E-mail: dingying@indiana.edu 

 

Jiang Li 

Department of Information Resource Management, Zhejiang University, Hangzhou, Zhejiang, 

China, 310027. 

Telephone: +86-18858182670 

E-mail: li-jiang@zju.edu.cn 

 

Yi Bu 

School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, 

USA; 

Telephone: (812) 558-8130 

E-mail: buyi@iu.edu 

 

Lei Pei 

School of Information Management, Nanjing University, #163 Xianlin Avenue, Nanjing, Jiangsu, 

China, 210023. 

Telephone: +86-13770602872 

E-mail: plei@nju.edu.cn 

 

Jianjun Sun 

School of Information Management, Nanjing University, #163 Xianlin Avenue, Nanjing, Jiangsu, 

China, 210023. 

Telephone: +86-13905150993 

E-mail: sjj@nju.edu.cn 

 

Correspondence concerning this article should be addressed to Dr. Jianjun Sun.  

mailto:chaomin@iu.edu
mailto:dingying@indiana.edu
mailto:li-jiang@zju.edu.cn
mailto:plei@nju.edu.cn
mailto:sjj@nju.edu.cn


 

Abstract 

Citations in scientific literature are important both for tracking the historical 

development of scientific ideas and for forecasting research trends. However, the 

diffusion mechanisms underlying the citation process remain poorly understood, 

despite the frequent and longstanding use of citation counts for assessment purposes 

within the scientific community. Here, we extend the study of citation dynamics to a 

more general diffusion process to understand how citation growth associates with 

different diffusion patterns. Using a classic diffusion model, we quantify and illustrate 

specific diffusion mechanisms which have been proven to exert a significant impact on 

the growth and decay of citation counts. Experiments reveal a positive relation between 

the “low p and low q” pattern and high scientific impact. A sharp citation peak produced 

by rapid change of citation counts, however, has a negative effect on future impact. In 

addition, we have suggested a simple indicator, saturation level, to roughly estimate an 

individual paper’s current stage in the life cycle and its potential to attract future 

attention. The proposed approach can also be extended to higher levels of aggregation 

(e.g., individual scientists, journals, institutions), providing further insights into the 

practice of scientific evaluation. 

 

Keywords: Science of science, diffusion of innovations, diffusion of citations, citation 

process 

 

Introduction 

Like a currency (Yan, Ding, & Cronin et al., 2013) circulating in the scientific 

community, citations provide a rough measure of academic impact (Moed, 2006; 

Abramo & D’Angelo, 2016). Citation data, especially the number of citations, have 

been widely used as a basic metric in many scenarios (Hirsch, 2005; Garfield, 2006; 

Fersht, 2009) of scientific evaluation. However, the citation process itself (Cronin, 

1984), which not only records the trajectories of scientific development (Kuhn, 1962) 

but also provides implicit clues as to where science will go (Sinatra, Deville & Szell et 

al., 2015), remains less explored. 

Citation is a multifaceted process. For example, Figure 1 shows the citation 

histories of two imagined papers, both published in the same field and year, with each 

cited 127 times in the first 15 years post-publication. Intuition tells us that Paper 1 

would likely achieve more citations in the future than Paper 2 would, but citation-

number-based indicators, such as total citations and average citations per year, would 

make no distinction between the two papers. This inconsistency is attributable to a trait 

shared by most currently-used citation metrics, namely, their ignorance of the dynamic 

nature of citations. A consideration of the problem leads to broader questions: how 

much do we know about the citation process? Why and how do citations grow and 

decay? Moreover, how can we safely use citation metrics despite our limited knowledge 

of this process? Although the citation process may be difficult to predict accurately, we 

conduct an exploratory study with the help of a quantitative model to broaden our 



understanding of the above issues. 

 

 

Figure 1: Two imagined papers with identical total citations but distinct citation patterns 

 

 In fact, the citation process is closely related to a well-established topic of research: 

the diffusion of innovations (Rogers, 1995). Consumer adoption of an innovative new 

product, for example, has long been of both practical and academic interest to scientists. 

Research assumes that the adoption of a new product is mainly driven by two 

mechanisms that are related to different buying motives among potential buyers, namely, 

the innovation mechanism and the imitation mechanism. The innovation mechanism 

takes effect when individuals learn of the new product and then decide to buy it 

irrespective of the influence of others. The imitation mechanism, in contrast, accounts 

for adoption decisions driven partly by social pressure, which increases with the number 

of previous adopters. Because of its similarity to the spreading of an epidemic (Bartlett, 

1960), the imitation mechanism is often called a contagion effect (Burt, 1987; Young, 

2009). 

Combining these two effects, Bass (1969) proposed a model that has been used by 

marketing scientists as a parsimonious way to describe and predict the diffusion of new 

products. The model involves three important parameters: the innovation coefficient p, 

the imitation coefficient q, and the market potential m. Historical sales data can be used 

to estimate these three parameters for a given product, facilitating a rough prediction of 

future sales. 

 



 

Figure 2: Product sales curve and paper citation curve. (A) Adoptions of VCR in the USA1; 

(B) Yearly citation counts of a scientific article (Flick & Bloch, 1974) 

 

 Examination of various diffusion datasets suggests the cumulative adoption and the 

period-by-period adoptions are usually portrayed respectively by an S-shaped curve and 

a Bell-shaped one. This naturally suggests an association between innovation diffusion 

and the citation process, since temporal citation curves resemble these adoption curves 

(see, for instance, Figure 2). Since the Bass (1969) model has been widely applied in 

literature to measure the diffusion of such innovations (Lilien, Rangaswamy & Van den 

Bulte, 2000) as durables and industrial and agricultural technologies, it seems 

reasonable to suppose that it might also help us understand the spread of scientific ideas. 

As the trace of scientific development, citation is traditionally regarded as a proxy for 

scientific impact, but factors aside from a work’s intrinsic value (Petersen, Fortunato & 

Pan et al., 2014) may also affect citation counts, complicating the task of predicting an 

individual paper’s future citation patterns. Nevertheless, quantitative efforts will surely 

help us better understand the citation process. 

We define citation diffusion as the process by which a scientific idea expressed in 

a publication is communicated through certain channels among the members of a 

scientific community. This definition provides a wide perspective for us to investigate 

the citation process, making it easier to understand general citation phenomena, 

including some seemingly puzzling ones, such as “sleeping beauties” in science (van 

Raan, 2004; Ke, Ferrara & Radicchi et al., 2015; Li & Shi, 2016; Min, Sun & Pei et al, 

2016). In this study, we aim to further our understanding of the citation process by 

analyzing the citation curves of numerous academic publications with the help of the 

Bass model, as reinterpreted in the novel context of citation. In doing so, we make the 

following contributions to the literature: 

 Introducing diffusion-of-innovations theory as a tool for analyzing the 

dynamic process of citation; 



 Exploring how diffusion patterns influence scientific impact; and 

 Providing a simple method for roughly estimating a paper’s present status and 

potential in garnering scientific impact. 

 

Related work 

 There is a large amount of previous work on the diffusion of innovations as well as 

on the study of citation trajectories. Efforts focused on the dynamic process of citations 

from the diffusion perspective, however, are lacking. In this section, we first give a brief 

introduction to the diffusion-of-innovations theory (Rogers, 1995), then explicate one 

of the most successful paradigms to emerge from this theory, namely, the diffusion 

model posited by Bass (1969). Finally, we review previous efforts in modeling citation 

histories. 

The theory of diffusion of innovations 

 It is often difficult for an innovation, whether a new idea, technology, product, or 

service, to gain widespread acceptance, even though the innovation may have obvious 

advantages. The diffusion-of-innovations theory, proposed by Rogers in the 1960s, 

seeks to understand the spread of innovations such as new concepts, designs, and 

products. It has offered guidance in analyzing many practical scenarios, such as the 

marketing of new products (Mahajan, Muller & Wind, 2000), the spread of social 

change (Wejnert, 2002), and the penetration of public policies (Simmons & Elkins, 

2004). 

Diffusion, as defined by Rogers (1995), is “the process by which an innovation is 

communicated through certain channels over time among the members of a social 

system.” Four main elements (Rogers, 1995) can be derived from this definition: the 

innovation itself, communication channels, time, and the social system. The innovation 

can be either tangible (e.g., a new product) or intangible (e.g., a new technology or 

policy). Whether the innovation is objectively novel is not of great importance. Instead, 

a person’s thoughts about its novelty determines whether it will be adopted or not. The 

characteristics of the innovation can thus play an essential role in the speed of its 

adoption by the crowd (Tornatzky & Klein, 1982). Rogers differentiates two channels 

by which the innovation spreads through the social system: mass media and 

interpersonal communication. Mass media is an efficient channel that plays a decisive 

role in the early stage of diffusion, disseminating new knowledge to the majority of 

potential adopters in a short time. Examples include TV, newspapers, and radio 

broadcasts. Interpersonal communication is also an important channel in which a person 

is persuaded by companions to adopt the innovation; this channel is especially 

important when the crowd shares similar (e.g., socioeconomic or sociocultural) 

characteristics (Del Vicario, Bessi & Zollo et al., 2016). These two communication 

channels are also described as two effects which influence the diffusion process in a 

social system: namely, the innovation effect and the imitation effect. This 

conceptualization of diffusion channels has long been widely adopted by those who 

seek to model the diffusion patterns of various innovations (e.g., Bass, 1969). 

The remaining two elements of the diffusion model are time and the social system. 

Time, as a dimension of innovation-diffusion analysis, allows for a measurement of the 



speed by which members of the social system adopt the innovation and reveals 

differences among those members. The social system itself is the arena in which the 

diffusion is brought about and reaches the eventual limits of its scope and extent; this 

system includes such factors as social structure, social norms, and influential 

individuals. The diffusion-of-innovations theory provides a systematic framework for 

analyzing and understanding diffusion phenomena in human behavior. As such, it has 

given rise to an extensive body of research literature. 

 

The Bass diffusion model 

The Bass diffusion model (Bass, 1969) is one of the competing paradigms put forth 

to model the diffusion of new products and technologies. The model’s impact is attested 

by the fact that the original “Bass model” paper has been voted one of the Top 10 Most 

Influential Papers published in the 50-year history of Management Science (Bass, 2004).  

According to Rogers’ theory (as briefly described above), individuals in a social 

system can be divided into two groups by the timing of the adoption of an innovation: 

innovators (defined as the first 2.5 percent of adopters) and imitators (the remaining 

adopters). Innovators make adoption decisions regardless of other adopters’ influence, 

while imitators are influenced in the timing of adoption by the pressures of the social 

system. Further formalizing this distinction, the Bass model posits that diffusion 

patterns can be modeled through two mechanisms: innovation and imitation. It assumes 

the probability that an individual who has not yet purchased the new product at time t 

will do so in the next small time increment is a linear function of the proportion of the 

total number of individuals having already purchased: 

h(t) = 𝑝 + 𝑞𝐹(𝑡), where             (1) 

ℎ(𝑡) represents the hazard rate of adoption at time t, 

𝐹(𝑡) is a cumulative distribution function of adoptions at time t, 

𝑝 is the coefficient of innovation, corresponding to external influences such as 

 mass media, 

𝑞 is the coefficient of imitation, corresponding to internal influences such as 

  interpersonal communication. 

Using the definitions of the density function, f(t) = 𝑑𝐹(𝑡)/𝑑𝑡, and of the hazard 

rate, h(t) = 𝑓(𝑡)/[1 − 𝐹(𝑡)], Equation (1) can be reexpressed as: 

dF(t)

dt
= [𝑝 + 𝑞𝐹(𝑡)][1 − 𝐹(𝑡)].           (2) 

Bass then multiplies both sides of Equation (2) by the third parameter 𝑚, which is 

the market potential (final number of adoptions) of the product, and obtains the basic 

form of the Bass model: 

𝑛(𝑡) =
𝑑𝑁(𝑡)

𝑑𝑡
= [𝑝 + 𝑞

𝑁(𝑡)

𝑚
] [𝑚 − 𝑁(𝑡)] = 𝑝[𝑚 − 𝑁(𝑡)] + 𝑞

𝑁(𝑡)

𝑚
[𝑚 − 𝑁(𝑡)], (3) 

where 𝑁(𝑡) is the number of cumulative adoptions by time 𝑡, and 𝑛(𝑡) is the 

number of new adoptions at time 𝑡. Solving the differential equation above, two forms 

of curve equations can be obtained, namely, the S-shaped cumulative curve in Equation 

(4), and bell-shaped growth curve in Equation (5): 



𝑁(𝑡) = 𝑚[
1−𝑒−(𝑝+𝑞)𝑡

1+
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡

],             (4) 

𝑛(𝑡) = 𝑚[
𝑝(𝑝+𝑞)2𝑒−(𝑝+𝑞)𝑡

[𝑝+𝑞𝑒−(𝑝+𝑞)𝑡]2 ].            (5) 

Using the diffusion data of a new product in the initial period, we can estimate the 

model parameters, and then predict future purchases of the product; for products that 

lack sales data, the Bass model can still offer a prediction based on the sales histories 

of similar products. Rogers (1995) provides a summary of attributes influencing an 

innovation’s rate of adoption; these include relative advantage, compatibility, 

complexity, trialability and observability. In this perspective, diffusion patterns 

characterized by similar model parameters are also possibly similar in terms of 

underlying innovation characteristics. In one meta-analysis (Sultan, Farley & Lehmann, 

1990), for example, the parameter p was found to be generally higher in Europe than in 

the U.S.; most of the new products were introduced first in the U.S., perhaps making 

the innovation less risky and leading to faster adoption in Europe. It was also found that 

industrial/medical innovations have higher q than other innovations, because the 

adopting units may be under high pressures to adopt quickly. 

The Bass model has been successfully applied to estimate the diffusion data of 

many innovative products, covering a wide range of areas (Lilien, Rangaswamy & Van 

den Bulte, 2000) such as durables, retail services, industrial technologies, agriculture, 

education, and pharmaceuticals. However, despite the model’s simplicity, some basic 

assumptions of the Bass model are not consistent with observed reality: in a real market, 

the market potential is in dynamic variation, marketing strategies exist, new products 

are upgraded, and different products can be influenced by one another’s sales 

performance. Therefore, some efforts have been made to modify the Bass model 

(Centrone, Goia & Salinelli, 2007; Norton & Bass, 1987; Bagchi, Kirs & López, 2008; 

Islam, Fiebig & Meade, 2002; Roberts, Nelson & Morrison, 2005). Nonetheless, 

research (Chandrasekaran & Tellis, 2007) shows that the Bass model fits actual data 

almost as well as much more complex models which seek to correct its limitations (Bass, 

Krishnan, and Jain, 1994). Consistent with the results of decades of subsequent research, 

the simple Bass model is still preferred to other models in many areas of application. 

Modeling citation trajectories 

 The citation dynamics of a scientific publication are somewhat like the sales data 

of a new product. By analogy, we can refer to the temporal dynamics of such citations 

as the diffusion of citations. Many efforts (Mingers, 2008; Mingers & Burrell, 2006; 

Pilkington, 2013; Bouabid, 2011; Nadarajah & Kotz, 2007) have been devoted to fitting 

various distribution models to these citation data; the models evaluated include 

exponential, logistic, Gaussian, Gompertz, Weibull, gamma, beta, Pearl logistic, and 

inverted Gaussian distributions, among others. However, the application of this class of 

methods has been subject to at least two major limitations. First, the distribution models 

are usually conducted on citation data in aggregate levels and within a relatively short 

time span—for example, on the journal level within 10 years (Pilkington, 2013). For 

citations to individual papers with much longer time periods (e.g., decades), citation 

patterns would vary so dramatically that it becomes difficult for any single distribution 



to fit. Second, the parameters in these mathematical models rarely have corresponding 

meaning in a citation context; thus, they provide limited help in understanding the 

citation process. Wang, Song & Barabási (2013) consider individual papers’ preferential 

attachment, aging, and fitness, and derive a mechanistic model for the citation 

trajectories of those papers, finding that predictable patterns exist in the long-term 

citation data. One limitation of the model, however, is its inability to account for the 

citation bump observed in the case of “delayed” papers (Ke, Ferrara & Radicchi et al., 

2015). Furthermore, Wang, Mei & Hicks (2014)’s experiment also shows the difficulty 

in predicting future citations for individual papers. 

 The Bass model, meanwhile, has been used in several studies of citation dynamics. 

Franses (2003) was the first to apply the Bass model in citation analysis research, where 

he fit the model to citations to papers in the journal Econometrica 1987 and found that, 

on average, the impact of these articles lasted for about 15 years. In a later study (Fok 

& Franses, 2007) using the diffusion-of-innovations theory, Franses and his colleague 

tried to explain the process of citation accumulation and the relation between key 

characteristics of the diffusion process and features of the articles. On the author level, 

Bjork, Offer & Söderberg (2014) found that the Bass model fits well with the citation 

trajectories of some Nobel Prize winners in Economics, and that economic knowledge 

follows the typical innovation cycle. In these studies, the Bass model was viewed as a 

useful heuristic for understanding the spread of scientific ideas. The nuances of the 

model’s parameters, however, have remained largely unexplored, as have the model’s 

practical implications. 

 

Data and method 

Following the practice of previous research (Li et al., 2014; Sun, Min & Li, 2016; 

Min, Sun & Pei et al., 2016), the empirical analysis in this paper is based on a dataset 

of essays by 629 Nobel Prize winners in four disciplines: Chemistry, Physics, 

Physiology or Medicine, and Economic Sciences. Their publications from 1900 to 2000 

and citation data until 2011 were collected from the Web of Science database. In total, 

58,963 papers and their citation data were obtained with a citation window of at least 

11 years.  

A scientific idea is a kind of innovation. Thus, if the spread of a fresh scientific 

idea follows the Bass diffusion paradigm, we should be able to obtain specific values 

for the parameters p, q, and m when applying the model to publication data. The value 

of m can be regarded, straightforwardly enough, as the ultimate number of citation 

counts a paper can get. Interpreting the values of p and q directly as innovation effect 

and imitation effect, however, might cause confusion. Therefore, we refrain from 

imposing an interpretation on p and q here and instead seek the answer from 

experimental results. Based on the derivation and solution of the Bass equation in the 

previous section, we applied the model to individual papers to estimate the parameter 

values for each paper. To guarantee the accuracy and reliability of the empirical analysis, 

we carefully processed the data in the following manner. 

(1) Papers with no more than 19 citations2 were excluded. This left 28,769 papers 

in the dataset. 



(2) In terms of estimation methods, research has reached a clear consensus that it 

is non-optimal to use Ordinary Least Squares to estimate the Bass model, but the choice 

between Non-linear Least (NLS) Squares and Maximum Likelihood Estimation is still 

not clear (Meade & Islam, 2006)3. We opted to use NLS in this study, since the method 

has gained widespread acceptance in recent works (Van den Bulte & Lilien, 1997). 

(3) As initial parameter values were required, we ran the model in loops with 

different ranges of parameter values until no new results appeared 4 . The results 

converged after the second loop, but we ran the third and fourth loops and found the 

same results. A total of 23,399 papers fit the model, among which 22,028 papers have 

non-negative parameters values and R2 values. A summary of the 22,028 papers is listed 

in Table 1. 

(4) To get reliable results, we filtered the papers by R2 values. Empirical analysis 

in the literature (Bass, 1969) shows that even in instances of low R2 values (R2=0.077), 

the Bass model provides a good description of the general trend of historical data. 

Therefore, without loss of generality and rigor, we retained papers with 𝑅2 ≥ 0.5. This 

condition led to a final dataset of 11,037 papers. 

 

Results 

The diffusion of citations 

In terms of coefficients p and q, we find that citation diffusion is roughly similar to 

the diffusion of new products and technologies. Since 23,399 out of 28,769 papers 

successfully fit the model, most papers in the dataset follow the Bass diffusion 

mechanism. Table 1 shows that the median value and the mean value for parameter p 

are 0.032 and 0.035, respectively; corresponding values for parameter q are 0.216 and 

0.336, respectively. This closely matches the values reported in the marketing diffusion 

literature, where p values are usually between 0.00007 and 0.03 and q values tend to lie 

in the interval from 0.38 to 0.53 (Chandrasekaran & Tellis, 2007). The consistency in 

model parameters implies that the Bass diffusion mechanism applies to the citation 

diffusion process for most of the papers, even though it was originally proposed for 

product diffusion. Meanwhile, it is observed that, generally, the parameter p is slightly 

larger for papers than for products, and the parameter q is slightly smaller. However, it 

remains unclear how p and q should be interpreted as elements of the citation process. 

Table 1 Summary of the estimation results (N=22,028) 

 Min 1st Qu Median Mean 3rd Qu Max 

Innovation 

coefficient 

p 

0.000 0.016 0.032 0.035 0.049 0.527 

Imitation 

coefficient 

q 

0.000 0.106 0.216 0.336 0.415 4.590 

Market 

potential m 

5.16 35.08 68.31 225.25 157.21 230283.07 

R2 0.000 0.275 0.501 0.487 0.701 0.991 

 



Interpretation of the parameters p and q 

Table 1 indicates that q values are generally much larger than p values for papers. 

The result is not surprising, as this pattern was also observed in many studies on 

diffusion of innovations (Bass, 1969; Sultan, Farley & Lehmann, 1990; Loh & 

Venkatraman, 1992; Park, Kim & Lee, 2011). Our concern is how to appropriately 

interpret these parameter values in this novel context and how to understand their 

influence on the citation process. 

Investigation of the papers’ citation curves reveals four major findings: 

(1) Small p usually indicates a small proportion of citation counts to a paper in the 

first few years after publication. 

(2) Large p usually indicates a large proportion of citation counts to a paper in the 

first few years after publication, often followed by a decreasing trend in citations over 

time. 

(3) A sharp citation peak often appears together with a large q value, with yearly 

citations drastically increasing before the peak and drastically decreasing after the peak. 

(4) Papers with simultaneously small p and small q have many more citations than 

those with disparate p and q values. Figure 3 gives a clear illustration of this observation. 

 
Figure 3: Papers with simultaneously small p and small q have many more citations 

 

To see the characteristics of the parameters p and q, we select from the dataset 

representative papers with very small and very large p, q values5, and graph the citation 

curves of these papers in Figure 4.  



 

 

Figure 4: Temporal citation curves of papers with very small and very large p, q values 

Papers in Panel 4C have both small p value and small q value; those in 4D have large p value but 

small q value; in 4A, small p value but large q value, and in 4B, large p value and large q value. In 

other words, across the four panels of Figure 4, p increases along the horizontal axis and q increases 

along the vertical axis. In all but Panel 4B, five instances that were published in approximately the 

same year in the 1970s are selected for illustration. 

 

150 papers have p value and q value both smaller than the corresponding 10th 

percentile values. Interestingly, the citation curve of this kind of paper generally follows 

a prominent trend: overall, yearly citations maintain a persistent increase after 

publication. Figure 4C shows five typical citation curves of these papers. What’s more, 

these papers generally have a very large number of total citations compared to other 

papers in the dataset. For these papers, the median of total citations is 647 and the mean 

is 1,160, while the 90th percentile of total citations for all papers in the dataset is only 

429. 

Papers with large p value but small q value (Figure 4D) exhibit almost the opposite 

trend of papers in Figure 4C. These papers receive the highest yearly citations in the 

early stages but display a sustained downward trend in subsequent years. A total of 260 

papers fall into this category; their impact is mediocre, with an average total citations 

of 96. 

Papers with small p value but large q value seem to have a citation pattern closer 

to that of a typical paper, whose citations begin to decrease several years after 

publication (Moed, Burger, & Frankfort et al., 1985; Amin & Mabe, 2003). Figure 4A 

depicts five instances of 334 papers in this category. Their citations grow from a 

relatively low level to the highest level and then go through a decline similar to that 

found in in Figure 4D. However, the two categories of papers are different in two ways. 

First, there exists an obvious rise in yearly citations prior to the citation peak for papers 



with small p but large q (Figure 4A). Second, this type of paper often exhibits an 

unusually steep citation peak, much higher than other fluctuations in the same citation 

curve. With an average of 36 total citations, however, these papers have even less of an 

impact than those with large p and small q. 

Papers falling into the last category (Figure 4B), with both large p and large q values, 

are relatively infrequent. There is only one instance in the dataset whose p value is 

0.119171 and q value is 2.054208. The paper got some attention shortly after 

publication and reached citation peak in the year of publication after which its yearly 

citations rapidly declined and remained at a low level. Unlike other papers that lose 

citations quickly and then stay uncited, this paper still maintained a small amount of 

citations even decades after publication. 

 Given the observations above, we interpret the parameters p and q in the citation 

context as follows. 

 Parameter p reflects the proportion of citations a paper receives in the early stage 

after its publication, relative to its entire lifecycle. A large p value indicates a paper gets 

a large proportion of its citations shortly after publication, which also means it has 

limited potential to obtain more citations in the remaining portion of the lifecycle 

(Figure 4B, D). A small p value signifies a small proportion of early citations compared 

with the eventual total; on the other hand, it indicates the paper has a high potential to 

obtain more citations as time goes on (Figure 4A, C). Therefore, parameter p to some 

extent represents a paper’s potential to achieve future citations: the smaller a paper's 

parameter p, the more potential it has to achieve future citations; the larger the p value, 

the more citations the paper has exhausted in the early stage. 

In addition to potential, however, a paper also needs persistence to achieve great 

impact. (The examples in Fig 4A show the fate of papers which have the former trait, 

but not the latter.) The quality of persistence is, to an extent, captured by parameter q. 

In Eq. 1, q is the slope of the math formula of the probability that a researcher who has 

not yet added a paper in her reference list will do so in the next small time increment. 

A large q value can certainly increase the probability that a paper will receive a new 

citation, but this also speeds up the paper’s obsolescence and death, since the 

probability can’t exceed 1. As more and more researchers (F(t) in Eq. 1) cite the paper, 

the probability that a new researcher will do so (h(t) in Eq. 1) increases, but this 

condition ends when h(t) reaches 1 and the ultimate citation potential m (the third 

parameter in the Bass model) is achieved. A large q value thus indicates quick death, or 

poor persistence (Figure 4A, B). A small q value, however, provides more time for a 

paper to persistently accumulate citations (Figure 4C, D). 

Papers in Figure 4C illustrate how the Bass model parameters influence the citation 

dynamics. They also provide a clue to the underlying mechanism: high-impact papers 

often have both good potential and good persistence. 

 

Diffusion patterns and scientific impact 

 In the Bass model, m stands for the ultimate market potential a new product can 

achieve. By analogy, in the context of citation diffusion, m can be regarded as the total 

number of citations a paper can obtain through its lifetime. The strong linear trend in 



Figure 5A suggests a significant positive relation (correlation coefficient = 0.350, p < 

0.001) between total citations and m. Although the total citations of most papers are 

located close to m, some are below m, which suggests that they still have great potential 

for achieving future impact. It may be that those papers have not yet reached the peak 

of their citation curves; some papers published late need more time to reach their peaks. 

To keep our results grounded in the papers’ observed impact, we use total citations 

instead of m to analyze the relation between scientific impact and diffusion patterns. 

 

Figure 5: Scatter plots for predicted final citations (m), current citations, parameter p, 

and parameter q 

 

 Figure 5 also shows the relations among total citation count, parameter p, and 

parameter q. Parameter p has no significant relationship to total citation count (Figure 

5B): papers with a given p value may have various total citation counts, and large 

citation counts can appear with a wide range of p values. The Pearson correlation test 

validates this observation with a nearly negligible correlation coefficient (0.025, 

p<0.01). This indicates that early citation proportion (p) is, by itself, a poor predictor 

of a paper’s long-term scientific impact.  

 Parameter q has a somewhat clearer relationship to citation count than does p. 

Figure 5C indicates that total citation count generally decreases as the value of q 

increases. Again, this observation is borne out by the Pearson correlation test, which 

yields a correlation coefficient of -0.395 (p<0.001). This lends weight to our 

observation that rapid citation accrual may hasten the death of a paper, thus leading to 

lower total citation counts. Furthermore, Figures 5B & C indicate that q has a more 

direct and significant effect than p when their joint influence on total citations is 

considered. 

Figure 5D shows that the majority of articles have high p and high q. Connecting 

these parameters with total citations (see Figure 6), it is clear that papers with high total 

citations (light-colored areas) are mainly distributed where both p and q are relatively 



small. To further test this pattern, we select two groups of papers from the dataset: a 

high-impact group of papers with no fewer than 664 total citations each, and a 

mediocre-impact group of papers with no more than 24 total citations6. Figure 7 shows 

a significant difference between the two groups: high-impact papers tend to have both 

smaller p and smaller q than mediocre-impact papers. The gap in q values is even larger 

than the gap in p values. 

 

 

Figure 6: Innovation coefficient p, imitation coefficient q, and total citations 

 

 

 

Figure 7: Cumulative distributions of parameters p and q for two groups of papers 

 



Potential of scientific impact 

 If m, the third parameter in the Bass model, is used to estimate the market potential 

of a new product, can it also estimate future total citations? We choose papers with the 

largest m values and plot their actual citation curves (Figure 8), which exhibit diverse 

citation trends. Yearly citations in Figures 8B and 8C show continuously increasing 

trends in spite of some slight perturbations. The paper in Figure 8F goes through a 

citation surge and then keeps increasing. The paper in Figure 8A, however, goes 

downhill after climbing to a local peak, but then comes back up for a second surge. In 

Figures 8D and 8E, however, the papers seem to have completed the citation cycle. In 

general, we observe a huge difference between m and current total citations for papers 

with increasing citation trends (Figures 8A, B, C & F); for papers with a roughly 

complete citation cycles (Figures 8D & E), m is much closer to the current number of 

total citations. To differentiate papers with great future potential from those with great 

current impact, we propose the saturation level: 

saturation level = current total citations / m                    (7) 

 

Figure 8: Actual citation curves for papers with top m values. (m stands for predicted 

final citations; TC stands for current total citations) 

 

With the saturation level, we can roughly estimate the potential scientific impact for a 

given article. Papers with low saturation levels have great potential to achieve more 

citations in the future, e.g. papers in Figures 9A and 9B, with saturation levels of 0.50% 

and 0.65%, respectively, exhibit a high capacity for future citations. Papers with 

saturation level approaching 100%, in contrast, have almost exhausted their potential, 

as is shown in Figures 9C and 9D. Interestingly, papers can reach saturation levels even 

higher than 100%. Two instances (327.42% and 205.57%) are shown in Figures 9E and 

9F respectively. Both papers undergo a sharp citation peak after which they attain 

relatively few new citations. Their citation curves will likely converge to 0 soon, but in 

the meantime, the papers continue to receive citations at a low rate. These papers show 



potential exceeding that predicted by the Bass model. 

 

 

Figure 9: Papers with different saturation levels. (Satu level stands for saturation level; 

TC stands for current total citations) 

 

Model reevaluation 

We tested the Bass model on another dataset that was extracted from the American 

Physical Society journal series (hereafter APS dataset). We randomly selected 50,000 

APS papers and then applied Bass model on this dataset. Citation patterns similar to 

those in Figures 3 & 4 were found, suggesting the main findings of this study can be 

validated by different datasets. 

 In addition, further investigation of the cumulative distribution confirms that the 

three parameters are field-specific. In terms of the parameter p, papers in the natural 

sciences (e.g., Medicine, Physics, and Chemistry) are similar, while Economic Sciences 

papers have even smaller values. The parameter q, in contrast, separates the four 

disciplines clearly: Economic Sciences < Chemistry < Medicine < Physics. In terms of 

the parameter m, Chemistry < Physics < Medicine < Economic Sciences. Since the APS 

papers from Physics provide similar experimental observations, and the field-related 

differences don’t hamper our main conclusions, we have not repeated the experiments 

separately for every discipline. Moreover, the age of the papers shows limited impact 

on the three parameters, since further experiments show that the values of p, q, and m 

are almost randomly distributed throughout different ages. 

 The Bass model, we find, is a better descriptive model than it is a predictive model. 

Therefore, we should lower the expectations of the model’s long-term predictability. 

Just as Bass (1969) stated in the original paper, the model is intended for new product 

growth and thus should be regarded as a short-term model. Wang et al. (2013) have 

already shown that their model offers better performance than the Bass model in terms 

of long-term prediction. We also generated a prediction of citations 20 years later based 



on a 10-year training period. Figure 10 shows results similar to those of Wang et al. 

(2013), suggesting that the Bass model tends to underestimate long-term citations. 

Therefore, we suggest that the Bass model should be used to describe certain 

characteristics of citation process if so desired, instead of making accurate predictions. 

 
Figure 10: Predicting citations 20 years after publication based on a 10-year training 

period 

 

Discussion and Conclusion 

This paper studies the temporal diffusion of citations to scientific papers in the dynamic 

process of scientific communication. Scientific communication is complicated, 

multifaceted, and driven by patterns of discovery and adoption—traits which suggest a 

comparison to the already well-studied evolution and diffusion processes of innovative 

ideas, technologies, and products (Rogers, 1995). Although diffusion research in 

marketing concerns how to speed up the rate of adoptions and increase the number of 

final sales, we aim to find diffusion mechanisms of scientific ideas and new ways to 

evaluate scientific outputs. The theory of diffusion of innovations is applied to the 

dynamic process of citations to better understand the mechanism of scientific 

communication as well as the course of scientific advancement. The classic Bass model 

(Bass, 1969) is used to estimate the citation diffusion data of tens of thousands of papers 

by Nobel Prize laureates. Notably, this study quantifies and presents two mechanisms 

in the diffusion process of scientific ideas, corresponding to the innovation effect and 

imitation effect in marketing diffusion literature. By investigating two diffusion 

parameters p and q, and the diffusion mechanism of different types of papers, we show 

that in the citation realm p and q respectively associate, to some extent, with a paper’s 

potential and persistence in achieving future citations. For the diffusion of breakthrough 

innovations, both early take-off and late growth are slower but more persistent than the 

diffusion of mediocre innovations. Moreover, our proposed metric of saturation level 

shows a good ability to distinguish papers with great impact potential from those which 

have almost exhausted their scientific impact. 

 This study introduces diffusion-of-innovations theory to the analysis of citation 



dynamics. Although there has been a vast range of diffusion literature in such scientific 

fields as marketing, public policy, and sociology, the diffusion of scientific citations 

remains relatively less explored (Zhai, Ding & Wang, forthcoming). 

 To conclude, we discuss the dynamic process of citation from a diffusion 

perspective. Beyond citation count, which measures the overall impact of scientific 

outcome, we can gain more insights from the citation diffusion process and understand 

the nuances of scientific impact. The Bass model, which has achieved great success in 

marketing research, is applied to citation dynamics in this study. Results show that low 

citation counts of a paper usually associates with large early citation proportion (high 

value of p) or quick citation obsolescence (high value of q), which might indicate 

compatibility with traditional knowledge and thus a lack of novelty. In contrast, low 

values of p and q indicate high impact and more citations. The third parameter m, 

interpreted as the final number of citations a paper will achieve, is reasonable, since a 

paper will eventually die (or infinitely approach death) as time goes on. Quantitative 

measures, such as saturation level, could be considered to roughly estimate the potential 

impact of scientific output. Although the Bass model is not as good as WSB (Wang, 

Song & Barabási, 2013) model at predicting long-term impact (actually it was originally 

proposed as a short-term model for new products), what we emphasize here is its 

descriptive power and simplicity: it elegantly integrates the potential and persistency of 

a paper in terms of attracting citations into a single formula and successfully 

differentiates papers with distinct citation patterns (e.g., Figure 1 & Figure 4). 

 There are important limitations to this study. First, although we draw an analogy 

between citations and innovations, the two are different in certain essential respects, 

such the characteristics of their respective communication channels, suppliers, and 

adopter populations. These differences would be of great interest in future research. The 

second limitation is a manifestation of the first one: despite the parsimony of the Bass 

model, not all papers in the dataset follow the Bass diffusion mechanism. We ran the 

model in various ranges of parameter spaces, but 18.67% of the papers tested still didn’t 

fit the model. The reason why the Bass model failed to fit these papers requires further 

investigation. A third concern is the limited long-term predictive power of the Bass 

model. Therefore, we suggest the model be used as a descriptive one, that is, one that 

quantifies and describes certain characteristics of scientific outputs. In future studies, 

we would also intend to inspect the citation process using other tools of diffusion 

research, such as adopting behavior and diffusion networks. 
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