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Abstract 

The primary goal of the present study is to discover new drug treatments by topology analysis of drug 

associations and their therapeutic group network. To this end, we collected 19,869 papers dated from 1946 to 2015 

that are related to autism treatment from PubMed. We extracted 145 drugs based on MeSH terms and their 

synonyms (the total number is 6624) within the same ATC classification hierarchy and used them to find drug 

associations in the collected datasets. We introduced a new topology-driven method that incorporates various 

network analyses including co-word network, clique percolation, weak component, pathfinding-based analysis of 

therapeutic groups, and detection of important drug interaction within a clique. The present study showed that the in-

depth analysis of the drug relationships extracted from the literature-based network sheds new light on drug 

discovery research. The results also suggested that certain drugs could be repurposed for autism treatment in the 

future. In particular, the results indicated that the discovered four drugs such as Tocilizumab, Tacrolimus, 

Prednisone, and Sulfisoxazole are worthy of further study in laboratory experiments with formal assessment of 

possible effects on symptoms, which may provide psychologists, physicians, and researchers with data-based 

scientific hypotheses in autism-drug discovery. 

     

1. Introduction 

Trajectory analysis of the research profile of successful therapeutic drugs is of paramount importance for the 

drug research community due to the following reasons. First, by analyzing research trends and thrusts of drugs, the 

evolution of the research profile of drugs can be understood, which in turn enables to scrutinize the impact of the 

initial use of the drugs in experimental studies on the subsequent studies of the drugs used for drug to humans. 

Second, inference of the new relationship between drugs through time-series analysis leads to a new drug discovery. 

However, despite the cruciality of such needs and potential synergetic contributions of informetics approaches, 

informetics has not been fully applied to solve the core problems of drug discovery. The majority of informetrics 

research in drug study dealt with measuring scholarly activities of drug discovery either by co-word or co-MeSH 

term analysis (Hong et al., 2016; Bordons et al., 2004; Leydesdorff et al., 2012). Otherwise, bibliometrics 

approaches to drug discovery were mainly focused on how particular public databases or resources have an impact 

on drug discovery (Cheng et al., 2014). To the best of our knowledge, there has been no previous study of applying 

the informetrics approach for solving new drug discovery. The proposed approach is the first attempt to identify new 

relationships among therapeutic groups of drugs and use them to infer new drug discovery for autism treatment by 



 

  2

mapping drug associations onto their therapeutic groups. Our informetrics-centric approach coupled with text 

mining makes it possible to make use of trajectory analysis of therapeutic group networks for new drug discovery.  

 As the subject for the present study, we chose autism. Despite the increasing diagnosis of autism over the last 

twenty years and extensive biomedical research on brain and nervous system disorders, and related pharmacological 

problems, there has been little progress in the development of pharmacological treatments for the social impairments 

that are at the core of this disorder (Modi and Young, 2012; Martin et al., 1999; FDA, 2009). Accordingly, Norén 

argued that data-driven discovery can be considered in drug repositioning because it can produce no pre-specified 

hypothesis (Norén, 2011). As asserted by Norén, the large amount of pharmacological and biological knowledge 

available in the literature makes it an increasingly feasible to find novel drug indications for existing drugs using 

an in silico approach. By combining network analysis with text mining, the goal of the present study is two-fold: 1) 

to identify research trends pertinent to autism treatments, by discovering novel interactions among different 

therapeutic groups in autism research; 2) to identify drug repurposing opportunities for autism and proposing 

possible new scientific hypotheses by novel interactions among drugs discovered from step 1.  

A series of experiments showed that together with text mining techniques, our proposal of the topology-driven 

analysis was able to detect the new therapeutic groups of drugs and new, plausible drug discovery in autism 

treatment research. In particular, the present study revealed that 50% of research focused on drugs in the same 

therapeutic group in the early stage of autism research (prior to mid-2000s). However, this proportion decreased 

with time, and more than 70% of research focused on cross-therapeutic group drugs in the past 10 years. In addition, 

the results of the study identified that core therapeutic groups of autism have steadily changed over time. However, 

there is a stable subgroup existing in the drug network (i.e., that never changes with time in structure), which forms 

the foundation in autism treatment. In the drug network, we identified four drugs as worthy of further study in 

laboratory experiments, which may provide psychologists, physicians, and researchers with data-driven scientific 

hypotheses in autism-drug discovery. 

 

2. Related Work 

All drugs used in clinical medicine require large-scale trials before approval (Jeong et al., 2016), which 

provides a wealth of material in the published literature about the biological activities and safety of the drugs. 

However, the amount of such information is now too large for any one person to keep abreast of, even in a niche 

area of research. Scientific publications are growing at an exponential rate (Larsen and Von Ins, 2010), with over 50 

million papers published so far (Jinha, 2010), and over a million additional articles published annually (Björk et al., 

2008). That means on average a new article is published every 30 seconds. At the same time, digital publications are 

narrowing their science and scholarship focus, as well as the range of findings and ideas built upon them (Evans 

2008). Increasing interest in improving treatments for autism also has led to a surge in publications in this field; far 

more than any individual scientist can keep up with. As a result, data mining and information technologies have 

proven necessary for good research-based decision-making (Chen et al., 2012; Bianchi et al., 2014). Articles have 

been essential to bibliometric studies for decades (Ying et al., 2013). Based on articles, the concept of Entitymetrics 

was proposed (health and news) to measure the impact of knowledge units at various levels. One kind of 

entitymetrics are micro-level knowledge entities, such as genes, drugs, and diseases etc., and they act as carriers of 

knowledge units in scientific articles to identify the importance of entities embedded in scientific literature for 
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further knowledge discovery. In the present research, literature-based knowledge discovery aims to connect the 

potential relationships of scientific entities to generate new knowledge from the perspective of drugs. 

Secondly, as medicine advances, all approved drugs must be novel and important to be reasonably 

characterized as cures in their own domains. However, drug research and development requires huge investments, 

which means that an unclear target might result in additional costs or inefficiency (Williams et al., 2015). From this 

perspective, a scientific hypothesis can facilitate medical trials, as well as providing substantial data for the advance 

of science and improvement of medicine. Although experiment-based knowledge discovery is based on stringently 

validated data from experiments or clinical trials, the benefits of literature-based discovery can be enormous in 

helping domain experts to form scientific hypotheses. The connections between concepts in scientific literature can 

be established if two concepts co-occur in a predefined context (e.g., title, abstract, one sentence, or one paragraph), 

and researchers had verified its valuation. Stegmann and Grohmann also argued that co-occurrence network analysis 

is a powerful method for literature-based hypothesis generation and knowledge discovery by finding characteristic 

values in the co-keyword analysis which allow a rapid identification of possible cluster based on centrality-density 

ratio (Stegmann and Grohmann, 2003). After that, a study shows that Metformin changes the peroxisome 

proliferator-activated receptor in the uterine tissue of mice (Blumberg et al., 2013), and then researchers identified 

the interaction between Metformin and the peroxisome proliferator-activated receptor through a bio-entity citation 

network. In 2013, a research identified of an interaction between Metformin and Resistin, which supported 

(Newschaffer et al., 2007) the hypothesis that Metformin treatment had a positive impact on up-regulating Resistin. 

Given the rapid growth of scientific literature, literature-based approaches to generating hypotheses 

automatically have gained increasing attention in recent years. Swanson discovered that certain unintended logical 

connections across scientific domains and potentially revealing of new knowledge, were enabled by reference 

citations or other bibliographic clues (Swanson, 1987). By weaving the related but disjoint literatures together, 

implicit, unnoticed hypotheses can be generated (Swanson, 1987). Swanson pioneered literature-based discovery to 

mine potential and valuable relationships among biological concepts from public knowledge (Swanson, 1986; 

Swanson, 1988; Swanson and Smallheiser, 1999). Swanson pointed out that if the connections between literature A 

and B as well as literature B and C are known while the interaction between literature A and C is unknown, there is 

a potential, novel connection between literature A and C for new knowledge discovery. Employing this model, many 

disease-related hypotheses were proposed, including the relationship between fish oil and Raynaud’s syndrome 

(Swanson, 1986), magnesium and migraine (Swanson, 1988), indomethacin and Alzheimer’s disease (Smalheiser 

and Swanson, 1996), and metabolites and biological processes (Baek et al., 2017). By applying literature-based 

discovery to trend analysis of genes, the combination of bibliometrics and data-mining techniques based on MeSH 

was proposed to detect “hot” trends of emerging molecular mechanisms for obesity, which leads to discover 

emerging areas of scientific research within obesity (Rajpal et al., 2011). A literature-based trend analysis was 

proposed to explore potential biological connections between gene and disease, which can be utilized for drug 

discovery (Rajpal et al., 2014). By considering multiple ontologies and biological databases, a literature-based 

analysis was proposed to find detailed relationships between drugs, proteins and diseases for drug-repositioning 

discovery (Wei et al., 2014). In addition, researchers refined and extended ABC model to discover hidden 

connections (Gordon and Lindsay, 1996; Lindsay and Gordon, 1999). Chen and his colleagues proposed an 

explanatory and computational theory of scientific discovery by extending the concept of structural holes from 
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social networks to co-citation and collaboration networks (Chen et al., 2009). There was a recent attempt to discover 

potential relationships among biomedical concepts in biomedical literatures by a storytelling-based semantic path 

analysis (Song et al., 2015). Furthermore, some researchers have developed prediction approaches based on existing 

links in social networking or datasets, in which it is assumed that two nodes are similar if they share similar 

topology (e.g., a certain number of neighbors, and similar shortest paths) (Chen et al., 2012; FDA, 2012; He, 1999), 

and proposed a pathfinding and statistical model (Chen et al., 2012). Kostoff adopted a citation-based linkage 

through bibliographic coupling for literature-related discovery (Kostoff, 2014). Small and his colleagues identified 

biomedical discoveries using citation contexts (Small et al., 2017). In the context of drug discovery, drug-target 

interactions can be predicted based on observed topological features of a semantic network across the chemical and 

biological space. A new framework was proposed to predict drug-target interactions using a semantic network that 

integrates chemical, pharmacological, genomic, biological, functional, and biomedical information into a unified 

framework (Nooy et al., 2005). It offers the flexibility to enrich the feature space by using different normalization 

processes on topological features, and it can perform model construction and feature selection at the same time. 

 

3. Methods 

3.1. Data collection 

All the autism-related publications were retrieved from PubMed. We collected 19,869 papers dated from 1946 

to 2015, including research articles, letters, reviews, research support, and others, using the following 9 Medical 

Subject Headings (MeSH) terms relevant to autism: Autistic disorder; Autism spectrum disorder; Rett syndrome; 

Akinetic mutism; Macrocephaly autism syndrome [supplementary concept]; AUTS2 protein, human [supplementary 

concept]; Auts2 protein, mouse [supplementary concept]; Adenylosuccinate lyase deficiency [Supplementary 

Concept]; GoPro49 protein, human [Supplementary Concept]. These nine MeSH terms were obtained by querying 

PubMed with the term “autism” for the MeSH field search. A total of 251 drugs were extracted from the Food and 

Drug Administration (FDA) drug directory using MeSH (version: 5/24/2016) (FDA 2012). However, since several 

drug names are ambiguous, we decided to exclude those drugs from analysis and three physicians were involved in 

filtering the list which resulted in 145 drugs, including behavior (9 terms), disease names (13 terms), symptom (24 

terms), and technical terms (58 terms). Those excluded terms are listed in Table 1. These were classified using the 

Anatomical Therapeutic Chemical (ATC) classification system. 

Table 1 Drug list screened and kept for drug association analysis  

Abandoned terms (106) Remaining terms (145) 

Guilt; Anger; Digestion; Drainage; 

Metabolism; Solutions; Therapeutic; 

Weight Loss; Speech Therapy; 

Alcoholism; Arthritis; Cerebral Palsy; 

Colitis; Psoriasis; Sinusitis; Tonsillitis; 

Whooping Cough; Herpes Simplex; 

Hypertension; Hypoglycemia; Asthma; 

Burns; Headache; Infection; 

Inflammation; Injuries; Anxiety; 

Acetaminophen; Acetic Acid; Acetylcysteine; Adenosine; 

Allopurinol; Alprostadil; Amoxapine; Amphotericin B; 

Aripiprazole; Ascorbic Acid; Aspirin; Norepinephrine; 

Oxytocin; Paclitaxel; Paroxetine; Pentoxifylline; Phenytoin; 

Pimozide; Potassium Chloride; Prednisolone; Prednisone; 

Probenecid; Estrogens; Etomidate; Famotidine; Fentanyl; 

Flumazenil; Fluorouracil; Fluoxetine; Folic Acid; Galantamine; 

Glucagon; Glutathione; Dexmedetomidine; 

Dextroamphetamine; Diazepam; Digoxin; Dinoprostone; 
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Constipation; Cough; Depression; 

Diarrhea; Dyspepsia; Eczema; Edema; 

Enuresis; Fatigue; Fibromyalgia; 

Flatulence; Nausea; Neuralgia; Pain; 

Tinnitus; Wound Healing; Grief; 

Hypersensitivity; Macular Degeneration; 

Foot; Gold; Hand; Liver; Food Additives; 

Formaldehyde; Health; Hearing; Bacteria; 

Calcium; Calcium Carbonate; Candida; 

Candida albicans; Carbon Dioxide; 

Cholesterol; Collagen; Corpus Callosum; 

DNA; Ear; Female; Menopause; Metals; 

Nitrous Oxide; Nose; Oxygen; 

Phosphorus; Radiation; Selenium; Skin 

Care; Sleep; Spleen; Stomach; Sucrose; 

Sulfur; Urea; Vaccines; Water; Xenon; 

Zinc; Graphite; Hypothalamus; Iris; 

Libido; Manganese; Ammonia; 

Aspergillus niger; Caffeine; Chromium; 

Copper; Phenylalanine; Borrelia 

burgdorferi; Tryptophan; Tyramine; 

Ginkgo biloba; Glycine; Growth 

Hormone; Histamine; Hypericum; Lactic 

Acid; Turkey. 

Diphenhydramine; Dopamine; Droperidol; Ephedrine; 

Epinephrine; Estradiol; Topotecan; Trazodone; Tretinoin; 

Trifluoperazine; Valproic Acid; Vancomycin; Venlafaxine 

Hydrochloride; Verapamil; Vitamin B Complex; Vitamin D; 

Zinc Sulfate; Atomoxetine Hydrochloride; Azacitidine; 

Azathioprine; Baclofen; BCG Vaccine; Betamethasone; 

Bleomycin; Bumetanide; Buspirone; Calcitriol; Carbamazepine; 

Prochlorperazine; Progesterone; Promethazine; Propofol; 

Propranolol; Quetiapine Fumarate; Reserpine; Riluzole; 

Risperidone; Rivastigmine; Saccharomyces; Guanfacine; 

Haloperidol; Hydrocortisone; Hydrogen Peroxide; 

Hydroxyzine ;Ibuprofen; Iodine; Lactulose; Leucovorin; 

Lidocaine; Lithium; Carbidopa; Celecoxib; Cetirizine; 

Chlordiazepoxide; Chlorogenic Acid; Chlorpromazine; 

Citalopram; Clindamycin; Clonazepam; Clonidine; Clozapine; 

Saccharomyces cerevisiae; Salicylic Acid; Scopolamine 

Hydrobromide; Serotonin; Sertraline; Simvastatin; Sincalide; 

Sirolimus; Sodium Bicarbonate; Sodium Chloride; 

Spironolactone; Lithium Carbonate; Lorazepam; Lovastatin; 

Loxapine; Magnesium Oxide; Magnesium Sulfate; Mannitol; 

Melatonin; Memantine; Methotrexate; Methylphenidate; 

Colchicine; Cromolyn Sodium; Cyclophosphamide; 

Cycloserine; Cyclosporine; Cyproheptadine; Dacarbazine; 

Dexamethasone; Sulindac; Sumatriptan; Tacrolimus; Taurine; 

Testosterone; Theophylline; Thiamine; Thiothixene; 

Metoprolol; Midazolam; Minocycline; Misoprostol; Naproxen; 

Niacin; Nicotine; Nifedipine. 

 

3.2. Proposed Approach 

Fig 1 illustrates how the proposed work was conducted. The overall process of the proposed approach consists of the 

following major steps. 
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Fig 1 Overall Architecture of the Proposed Approach 

Step 1: Using the dataset described above, with either a 1st-level or 2nd-level ATC classification code, we built the 

six co-occurrence drug networks including one overall and five networks for five periods.   

 

Step 2: We identified relationships and communities among the drugs from the networks built per period to examine 

how these change over time. To this end, we employed three different techniques for further analysis. First, we 

adopted weak component analysis to identify similar drug associations in the network.  

 

Step 3: Second, we applied the pathfinding algorithm to find potential relationships among the therapeutic groups 

resulted from Step 2. The analysis was based on the previous four periods, and the potential relations were detected 

based on the 5th period.  

 

Step 4: Third, by applying CPM to extract Maximal-cliques from the network by 2nd –level ATC classification 

code, we proposed drugs that might be considered candidates for repurposing for Autism. These candidates, along 

with the literature analysis, can in turn be used to investigate new scientific hypotheses. 

 

Co-occurrence network analysis: This technique was developed during the 1980s and has been employed to 

map the dynamic development of several research fields (He, 1999; Bauin et al., 1991). Based on the co-occurring 

frequency of every two words in a PubMed record, the major themes of a given therapeutic group can be identified. 

The usefulness of co-word analysis techniques has been proven in determining the extent to which these strategies 

contribute to the definition of the thematic structure of a research network at any given moment in time (Bauin et al., 

1991). In this paper, it was established to identify the importance of the drugs in the network by their centralities. 

We built several different networks represented by different entities such as drug, drug interaction, and hierarchical 

ATC classification codes at a different level. We then employed weak component analysis to find drug associations 

in the network. A weak component is a maximal weakly connected subnetwork in which all nodes are connected by 
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a semi-path (Nooy et al., 2005). The word “maximal” means that no other node can be added to the subnetwork 

without destroying its defining connectedness. 

Pathfinding-based detection of related therapeutic groups: We adopted a pathfinding-based detection 

technique to identify the potential relationships between therapeutic groups on the built network. The theoretical 

basis is that if there is a relation between node A and B and between B and C, then the relation between A and C is 

regarded as a potential relation. A pair of nodes with one or more common neighbors becomes a path candidate. 

Here, we used a heap-based Dijkstra algorithm to quickly find paths between two nodes (Wang et al., 2011). The 

Dijkstra algorithm for pathfinding achieves a complexity of O (nlogn), which is relatively faster than other 

comparative algorithms (Chen et al., 2012). We selected only paths whose length of a path is greater than one and 

pairs of nodes that connect one or more common neighbors with each other. If the identified node pair (the drug 

pair) is found in the next period network in networks partitioned by certain periods, it is likely to be regarded as 

potentially valuable autism treatment, and only those drugs are fed into the pathfinding method for therapeutic group 

analysis. 

The pathfinding is described below: 

Let there be a graph G (V,E), with 𝑃ሺ𝑠 → 𝑡ሻ as the lth-shortest path from node s to node t; 𝑒→ as the edge 

from node i to node j; and Rij as the link type of eij. Then, the probability of traversing from s to t via a path is (Chen 

et al., 2012): 

𝑝൫𝑃ሺ𝑠 → 𝑡ሻ൯=∏ 𝑝ሺ𝑒→ାଵሻ
ିଵ
ୀଵ                       (1) 

An undirected graph consists of two parts of a path: from s to t, and from t to s. Thus, in an undirected graph, 

the algorithm can be described as (Chen et al., 2012): 

logሺ 𝑝൫𝑃ሺ𝑠, 𝑡ሻ൯ሻ=
൫୪୭ሺ൫ሺ௦→௧ሻ൯ሻା୪୭ሺ൫ሺ௧→௦ሻ൯ሻ൯

ଶ
.               (2) 

Clique percolation method (CPM): We adopted CPM, a community detection technique, to analyze maximal-

cliques to detect associations between therapeutic groups mapped from drugs. CPM allows overlaps between 

communities in a natural way. If a certain sub-graph fulfills the criteria to be considered a community, then it 

remains in a community, independent of what happens to any other part of the network. For example, the CPM has 

been used to detect communities in the studies of cancer metastasis through various social networks (Jonsson and 

Bates, 2011; Jonsson et al., 2006; Palla et al., 2007; Toivonen et al., 2006).  

Clique-based graph clustering and finding important drugs: Since there is no common drug found in a 

clique, we expanded the drug list by adding synonyms of a drug to the clique to which it belongs. For synonym 

expansion, we used DrugBank and PharmGKB. The total number of synonyms is 6,624. The number of synonyms 

per ATC is listed in Appendix 1. Subsequently, for 34 cliques in Table 5, we paired up drugs listed in each clique. 

This means we built an adjacency matrix per clique. We then computed a PageRank score of each drug and show 

top-10-ranked drugs, which can be treated as important drugs for the clique. Another approach to detecting 

important drugs is by interactions between drugs within a clique. To this end, we used the drug interaction list for a 

drug available in DrugBank. For a drug in a clique, we only considered drugs interacting with the drug if an 

interacting drug is found in the same clique. Since there are multiple drugs interacting with a drug, we paired up 

interacting drugs to create an adjacency matrix. Upon the built matrix, we computed the PageRank score of a drug to 
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identify important drugs interacting with the target drug within a clique. We displayed top-10-ranked drugs by 

PageRank.  

 

4. Results and Discussion 

All of the 145 drugs and their synonymous drug names (6,624 synonyms) are classified according to the ATC 

classification system, in which active substances were divided into different groups according to organ or system on 

which they act, and their therapeutic, pharmacological, and chemical properties. According to this classification, 

drugs are grouped into fourteen basic groups (1st level) according to the organic system of the organism where they 

work. These fourteen anatomical groups represent the first anatomical level and are labeled with one capital letter. 

Drugs are further divided into therapeutic groups (2nd level), which are often used to identify pharmacological 

subgroups when that is considered more appropriate than therapeutic or chemical subgroups. 1st and 2nd level 

classification codes are used in this research (1L and 2L, respectively, for short). 

 

4.1. Analysis of Drug Associations 

Based on co-occurrence of drugs, we built the drug association networks where each node denotes a drug and 

colored each node with its therapeutic group according to the 1st-level ATC classification code of drugs (Fig 2). In 

other words, drugs assigned the same 1st-level ATC code are painted the same color. Out of all 1st-level ATC 

classification codes, there are 13 therapeutic groups involved in autism research, and these therapeutic groups and 

their corresponding alphabetic codes are listed in Table 3. 

 

Fig 2 Drug association analysis of overall network and five periods’ networks 

To understand the change of drug research over time, we divided the dataset into five periods: before 1975, 

1976–1985, 1986–1995, 1996–2005, and 2006–2015, labelled with 2-2, 2-3, 2-4, 2-5, and 2-6, respectively. Fig 2-1 

illustrated the overall drug association network. These six networks were built and analyzed in the following 

manner: First, drug association was defined to show groups formed according to their relationships in the drug 

network. We detected drug associations on the basis of drug pairs from the drug network. Second, drug associations 

were examined by weak component analysis. Drugs in the same component were represented by ATC classification 
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codes where nodes in the same therapeutic group are painted the same color. In Fig 2-1, seven groups were 

identified, in which only two groups have the same color, and the others have more than one color, which is also 

shown in Table 2. This indicates that drugs coming from different therapeutic groups were relevant to autism 

research. 

Overall, Fig 2-1 to 2-6, also reflected in Table 2, show that in the early stage, about 50% of research was 

focused on drugs in the same therapeutic group in treating autism, and the proportion decreased with time, which 

indicates that the cross-therapeutic group research was more widely pervasive recently than ever before. During the 

latest stage, more than 70% of drug research was focused on cross-therapeutic group drugs, which was computed 

based on the second column and fourth column of Table 2 for the period of 2006-2015 (5/7=71.4%). From the 

perspective of drug research scale, the maximum number of early-stage drugs was only 12 in six therapeutic groups. 

However, as the evolution of autism treatments, 42 drugs appear in one association in 10 therapeutic groups. This in 

turn shows the more active interaction between different therapeutic groups including Alimentary tract and 

metabolism; Blood and blood-forming organs; Cardiovascular system; Dermatological; Genito-urinary system and 

sex hormones; Antineoplastic and immunomodulating agents; Musculo-skeletal system; Nervous system; 

Respiratory system; and Various (Table 3). 

 

Table 2 Statistics of drug associations in all periods. 

Periods Number of 

groups 

Number of 

groups with the 

same color 

Number of 

groups with 

different colors 

Number of 

nodes in the 

biggest group 

Number of 

colors in the 

biggest group 

Before1975 2 1 1 12 6 

1976–1985 4 0 4 12 4 

1986–1995 3 1 2 22 7 

1996–2005 7 1 6 22 6 

2006–2015 7 2 5 42 10 

Overall network 7 2 5 82 11 

 

Based on the six drug networks in Fig 2, we summarized the statistics of the autism-related drug associations 

in each therapeutic group and their proportion against the total drug number in each therapeutic group in Table 3. By 

the numbers and proportions of drugs, the therapeutic group, nervous system, was ranked no. 1 in all periods, 

followed by the therapeutic groups, cardiovascular system and blood and blood-forming organs, followed while 

their proportions tended to increase steadily. Furthermore, it is worth noting that the number of drugs from the 

dermatological, the genito-urinary system, and sex hormones therapeutic groups also increased in autism research. 

On the other hand, drugs for therapeutic group, the respiratory system, decreased with time. 

 

Table 3 Statistics of drug associations in all therapeutic groups 

Code Therapeutic group name 
Fig3-1 Fig3-2 Fig3-3 Fig3-4 Fig3-5 Fig3-6 

Nn Pn Nn Pn Nn Pn Nn Pn Nn Pn Nn Pn 

A Alimentary tract and metabolism  6 6.25% 0 0 1 5.00% 1 3.70% 4 10.26% 4 6.06% 
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B Blood and blood forming organs  5 5.21% 1 7.14% 2 10.00% 1 3.70% 4 10.26% 5 7.58% 

C Cardiovascular system  9 9.38% 2 14.29% 4 20.00% 3 11.11% 5 12.82% 7 10.61% 

D Dermatologicals  5 5.21% 0 0 1 5.00% 1 3.70% 0 0 5 7.58% 

G 
Genito-urinary system and sex 

hormones  
3 3.13% 1 7.14% 1 5.00% 1 3.70% 0 0 3 4.55% 

H Systemic hormonal preparations, excl 2 2.08% 0 0 0 0 1 3.70% 2 5.13% 1 1.52% 

J Antiinfectives for systemic use  1 1.04% 0 0 0 0 0 0 1 2.56% 0 0 

L 
Antineoplastic and immunomodulating 

agents  
8 8.33% 0 0 0 0 3 11.11% 2 5.13% 4 6.06% 

M Musculo-skeletal system  6 6.25% 1 7.14% 1 5.00% 0 0 1 2.56% 4 6.06% 

N Nervous system  42 43.75% 6 42.86% 9 45.00% 16 59.26% 16 41.03% 29 43.94% 

R Respiratory system  6 6.25% 3 21.43% 1 5.00% 0 0 3 7.69% 1 1.52% 

S Sensory organs  0 0 0 0 0 0 0 0 0 0 0 0 

V Various  3 3.13% 0  0 0  0 0  0 1 2.56% 3 4.55% 

Notes. Nn represents the number in a certain therapeutic group; Pn represents the proportion in the total number 

of a certain therapeutic group. 

Examining the drug research of the last stage shown in the last column of Table3, we see that drugs for the 

therapeutic groups like nervous system, cardiovascular system, and dermatology, blood and blood forming organs, 

occupied the top four positions, which indicates that drugs from these therapeutic groups were popular during that 

period. On the other hand, drugs for the therapeutic group, respiratory system and systemic hormonal preparations, 

decreased in proportion over the same period. 

 

4.2. Therapeutic Group Analysis in Autism Research 

In this sub-section, we aim to grasp the core structure of autism-related therapeutic groups by mapping drugs 

to their corresponding 1st-level ATC classification codes and making therapeutic group associations. We called the 

built network the “therapeutic group network” because ATC classification divided drugs into different groups 

according their therapeutic and chemical characteristics such as Cardiovascular system and Dermatologicals, which 

is similar with MeSH. Each node in each network is a therapeutic group in the ATC classification, which represents 

a therapeutic group related to autism. There are 13 therapeutic groups involved in autism research. 
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Fig 3 Therapeutic group relationships over time and in five periods 

The six boxes of Fig 4 represent six therapeutic group networks. Each node in the network is a therapeutic group 

represented by the ATC classification (therapeutic group) in autism. The upper box of Fig 3 (Fig 3-1) shows the 

relationships among the 13 therapeutic groups by weak component analysis whereas the five lower boxes represent 

the five stages of therapeutic group relationships. 

In Fig 3-1, the biggest node is the therapeutic group, nervous system, followed by cardiovascular system. A 

subgroup within the green colored dot line consists of six nodes with strong edges among them. In this group, 

therapeutic groups such as “N (Nervous system),” “C (Cardiovascular system),” “H (Systemic hormonal 

preparations, excl),” “S (Sensory organs),” “D (Dermatologicals),” and “A (Alimentary tract and metabolism)” are 

closely related in the autism treatments domain (“6CN” for short). In terms of topology analysis, this is a complete 

subnetwork (the strictest structural form of a cohesive subgroup, which is called a clique: a set of vertices in which 

each vertex is directly connected to all other vertices). From the perspective of medication treatment, they represent 

components of the core set-up usually combined to treat the basic symptoms of autism. 

The five stages shown in Fig 3-2 to 3-6 enable to provide the trajectory view of the medication treatment of 

autism from 1957 to 2015. There are 10 nodes in Fig 3-3, which is the largest network, and the subgroup 6CN 

mentioned above is shown clearly. This indicates that the relationships among the six nodes of 6CN were intensively 

studied during that period. In addition, a medication treatment structure was created since that time, and is the 

primary medication approach to treating autism. In Fig 3-3, the therapeutic group, N (Nervous system), is connected 

with other nodes weakly, but forms a complete network. This implies that nervous system symptoms are generally 

considered to be very important in treating autism. The therapeutic group, R (Respiratory system), is closely 

connected with 6CN, and a new complete subgroup (including 7 therapeutic groups) has emerged, indicating that 

treating respiratory-system symptoms was also considered important in treating autism over the indicated period, 

and was often combined with the core set-up. 

Unlike in Fig 3-3, therapeutic groups, J (Antiinfectives for systemic use) and L (Antineoplastic and 

immunomodulating agents), appear in Fig 3-4. This implies the beginning of treating autism from the perspective of 

anti-infectives and antineoplastic and immunomodulation medications, and it broadens the approach to autism 
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treatment. However, antineoplastic and immunomodulation medications were used individually between 1986 and 

1995. During 1996 to 2005, 13 therapeutic groups evolved into one network. 

Fig 3-6 illustrates the interaction research among the 6CN therapeutic groups, which can be seen more clearly 

by thick lines than before, although there are numbers of therapeutic groups involved in its parent groups. As it is 

always sharp-edged in the six 6CN networks and has the strong connection in all the periods, we see their central 

position in autism research and treatment in all cases and periods. At the same time, in the last period, therapeutic 

groups, R (Respiratory system), G (Genito-urinary system and sex hormones), and B (Blood and blood forming 

organs), were connected to 6CN completely, which shows the broadened scope of the research by exploring 

symptoms from the various therapeutic groups including Respiration, Genito-urinary and Sex hormones, and Blood 

systems in autism. 

 

4.3. Discovering New Therapeutic Group Relations in Autism Treatments 

Based on the six therapeutic group networks described earlier, we identified all of the common neighbors and 

their characteristics in the four networks (before 1975, 1976–1985, 1986–1995, and 1996–2005) by the pathfinding 

algorithm and CPM. We first applied the pathfinding algorithm to extract the related therapeutic groups that were 

later fed into CPM as input to detect cliques. Specifically, with a set of therapeutic groups represented by the 1st-

level ATC classification code, CPM predicts that five sets of node pairs with common neighbors (>=1) representing 

five sets of therapeutic group relationships are likely to appear in the next period. Subsequently, we verified every 

set of node pairs identified above in the later networks (1976–1985, 1986–1995, 1996–2005, and 2006–2015). By 

excluding the existing relations in the previous periods, we were able to find where the new relationship emerges. 

The results are shown in Table 4. 

Table 4 Verifying result of therapeutic group relationships at the 1st level 

Prediction based 

on the network 

Number 

of 

predicting 

node 

pairs 

Number 

of node 

pairs 

with 

common 

neighbors 

(>=1) 

Number of 

common 

neighbors 

(Total/Min:Max) 

Verifying in the network Evaluation 

of 

predicting 

(Nnode pairs 

found/Nall node 

pairs) 

D(1976-1985) D(1986-1995) D(1996-2005) D(2006-2015) 

P(before1975) 0 0 / / / / / 0 

P(1976-1985) 13 9 24(5:2) / C/G H/M 

B/D; B/H; C/G; 

D/G; G/H; G/R; 

M/R 

69% 

P(1986-1995) 13 7 25(5:1) / / / 

B/D; B/H; D/G; 

D/J; G/H; G/R; 

J/N 

54% 

P(1996-2005) 33 16 40(6:1) / / / 

A/V; B/D; B/H; 

D/G; D/J; D/V; 

G/H; G/L; G/R; 

48% 



 

  13

H/L; J/N; L/S; 

M/R; N/V; S/V; 

R/V 

 

There was no node pair (common neighbors >=1) of P (before 1975) found in the later periods. Ten pairs of P 

(1976–1985) were found in the later periods, one in the period of 1986–1995, one in 1996–2005, and eight in the last 

ten years. That means that in predicting 13 therapeutic group pairs, the previously nonexistent relationships between 

C (Cardiovascular system) and G (Genito-urinary system and sex hormones) appeared in the following period; the 

relationship between H and M appeared in 1996–2005; and the remaining eight pairs appeared in the last ten years. 

As 13 node pairs were predicted in this stage, and only ten pairs appeared, prediction accuracy for this period 69%. 

In the same way, the evaluation in P (1986–1995) is 54%, and that of P (1996–2005) is 48%. Moreover, most 

of the predicted therapeutic group pairs appeared in the last ten years, demonstrating the booming development of 

autism research after 2006, and the explosive growth in multi-disciplinary studies among all these therapeutic 

groups in autism research. In general, the average prediction accuracy is 42.75%. As to the value of common 

neighbor numbers, there is no relationship between this value and evaluation, which means that the value does not 

affect prediction. 

 

4.4. Discovering New Drug for Autism Treatments 

The results based on the 1st-level classification only suggested a broad drug predisposition across different 

therapeutic groups. However, the issue of how to articulate a specific drug hypothesis with regard to autism research 

was yet to be resolved. Thus, we attempted to discover new, plausible drugs for autism treatment by mapping drugs 

to the 2nd–level ATC classification code and using the pathfinding algorithm and CPM used for finding new 

therapeutic group relations in autism treatments. The reason for using 2nd-level ATC classification code instead of 

1st-level one is because the 1st -level ATC code is too broad to discover specific drugs commonly targeted by 

therapeutic groups. Fig 4-1 to 4-5 show the resulting networks of the five (1-5) cliques drawn from 1st-level ATC 

codes (1L1–5), respectively. 
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Fig 4 Cliques extracted from 1L1–1L5 

 

Fig 4-1 to 4-5 show that 34 cliques were identified (in the five networks) and labeled in different colors. The areas 

covered by a clique are shared drugs, and the more nodes a clique includes, the more concrete the group is. The 

cliques identified at this stage are all 3 or more cliques. Those cliques are all very concrete drug groups that can be 

regarded as candidates of new drug discovery for autism research and treatment.  

Since there is no common drug found in a clique, we decide to expand the drug list by adding synonyms of a 

drug to the clique to which it belongs. For synonym expansion, we use DrugBank and PharmGKB. Subsequently, 

for the 34 cliques mentioned above, we pair up drugs listed in each clique by building an adjacency matrix per 

clique. We compute a PageRank score of each drug and extract the top-10-ranked drugs, which can be treated as 

important drugs for the clique. Table 5 shows the common important drugs identified by expanded drug lists for a 

clique. 

The important drugs for autism treatment were detected by drug interaction within a clique, which means they 

are the most relevant drugs for autism from the perspective of drug interaction. We used the drug interaction list for 

a drug available in DrugBank. For a drug in a clique, we only consider drugs interacting with the drug if an 

interacting drug is found in the same clique. Since there are multiple drugs interacting with a drug, we pair up 

interacting drugs to create an adjacency matrix. Upon the built matrix, we compute the PageRank score of a drug to 

identify important drugs interacting with the target drug within a clique. We extract the top 10 ranked drugs by 

PageRank, which results in 340 drugs (Table 5 and Appendix 2). Out of these 340 drugs, there are four drugs 

(Prednisone, Tocilizumab, Tacrolimus, and Sulfisoxazole) that are also found in the drug interaction list. We treat 

those four drugs as the important drugs for autism treatment from the perspective of the topology structure of drug 

networks and drug interactions. 

Table 5 shows the important drugs per clique in order of PageRank score. If there is a common drug between 

drugs in a clique and drugs interacting with existing drugs in the clique, we regarded them as the potentially 

valuable drug for autism. As a result, the following four drugs were identified: Tocilizumab (c15), Tacrolimus (c15), 

Prednisone (c2 and c3) and Sulfisoxazole (c23). 

 

Table 5  34 cliques and the ranked first (or important drugs) identified from 1L1–1L5 

Sequence 

of clique 

Important drugs Sequence Score Interacting drugs Sequence Score 

c1 l-histidine 1 0.003006 quinine 1 0.004673 

c10 nadh 1 0.003819 paclitaxel 1 0.004234 

c11 pyridoxal phosphate 1 0.005194 cyclosporine 1 0.005538 

c12 nadh 1 0.005765 acebutolol 1 0.025657 

c13 nadh 1 0.006409 phenobarbital 1 0.007524 

c14 fluconazole 1 0.003098 amiodarone 1 0.005481 

c15 tocilizumab 2 0.004094 tacrolimus 2 0.006144 

c15 tacrolimus  3 0.004094 tocilizumab 3 0.005954 

c16 nadh 1 0.010165 mifepristone 1 0.008244 
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c17 fluconazole 1 0.003993 grepafloxacin 1 0.005522 

c18 nadh 1 0.004649 azelastine 1 0.004595 

c19 nadh 1 0.002921 cyclosporine 1 0.005398 

c2 prednisone 4 0.00294 prednisone 9 0.005695 

c20 nadh 1 0.001883 azelastine 1 0.006301 

c21 xylometazoline  1 0.063041 quinine 1 0.007415 

c22 nadh 1 0.00598 quinine 1 0.006526 

c23 sulfisoxazole 7 0.0019 sulfisoxazole 4 0.006173 

c24 nadh 1 0.007256 quinine 1 0.00642 

c25 l-histidine 1 0.004622 quinine 1 0.003932 

c26 fluconazole 1 0.003297 grepafloxacin 1 0.003214 

c27 sulfamethizole 1 0.003141 quinine 1 0.005577 

c28 cefacetrile 1 0.002241 haloperidol 1 0.005033 

c29 fluconazole 1 0.004264 haloperidol 1 0.004575 

c3 prednisone 2 0.003675 prednisone 5 0.003221 

c30 neomycin 1 0.002252 azelastine 1 0.004905 

c31 ofloxacin 1 0.002997 quinine 1 0.005361 

c32 chlortetracycline 1 0.002816 azelastine 1 0.004518 

c33 ciprofloxacin 1 0.00461 phenobarbital 1 0.003709 

c34 fluconazole 1 0.004621 phenobarbital 1 0.003723 

c4 l-histidine 1 0.004217 quinine 1 0.00293 

c5 l-glutamic acid 2 0.008095 quinine 1 0.009528 

c6 potassium iodide  2 0.007673 mifepristone 1 0.00837 

c7 adenosine triphosphate 1 0.002106 paclitaxel 1 0.018128 

c8 nadh 1 0.0023 mecamylamine 1 0.004701 

c9 nadh 1 0.003239 paclitaxel 1 0.019765 

 

Prednisone is a synthetic corticosteroid drug that is particularly effective as an immunosuppressant drug, but 

can cause depression or depressive symptoms in the short-term side effects, and cause Cushing’s syndrome, steroid 

dementia syndrome, and depression in its long-term side effects. Tacrolimus is an immunosuppressive drug used 

mainly after allogeneic organ transplant to lower the risk of organ rejection. Recently, it has been used to treat 

segmental vitiligo in children, especially on face, and cause various neuropsychiatric problems such as loss of 

appetite, insomnia, posterior reversible encephalopathy syndrome, confusion, weakness, depression, vivid 

nightmares, cramps, neuropathy, seizures, tremors and catatonia in its side effects. However, although these two 

drugs are important, they may cause some symptoms of autism. Thus, when drug indications and adverse effect of 

drugs are considered, only Tocilizumab and Sulfisoxazole may have the potential to form a feasible hypothesis for 

autism treatment. Tocilizumab is “an immunosuppressive drug, mainly for the treatment of rheumatoid arthritis and 

systemic juvenile idiopathic arthritis, a severe form of arthritis in children” (Wikipedia, 2017). FDA approved 

Tocilizumab for the treatment of systemic juvenile idiopathic arthritis for children from age of two in 2011, and the 
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followed by European Medicines Agency in August 2011 (Aleman-Meza et al., 2005). Since disrupted 

communication between the nervous system and the immune system may cause various mental disorders, such as 

depression and autism(Kraneveld and Garssen, 2014), Tocilizumab has the potential to treat some symptoms of 

autism through immunotherapy. Sulfisoxazole is a sulfonamide antibacterial with an oxazole substituent. A short-

acting sulfonamide antibacterial with activity against a wide range of gram- negative and gram-positive organisms, 

which is used to treat meningococcal meningitis (Drugbank, 2017b). As to Sulfisoxazole, Mecasermin, which is a 

drug “for the long-term treatment of growth failure in pediatric patients with Primary IGFD or with GH gene 

deletion”, need to be mentioned (Drugbank, 2017a). Sulfisoxazole can improve Mecasermin’s hypoglycemic 

activities to increase the therapeutic effect of the drug. Consequently, Sulfisoxazole may be the potentially important 

drug for autism medication. 

Although those four drugs discovered by the proposed approach are likely to be a candidate treatment for Autism, it 

is a premature stage to argue that it requires the clinical trials for verification. Instead, we suggest a further study 

based on laboratory experiments to ensure suitability of those four drugs for Autism treatment. Out of the four 

drugs, Prednisone was mentioned as an effective treatment for Autism in a recent report (Massachusetts General 

Hospital, 2018). The report was based on an earlier indirect evidence in the literature regarding Prednisone and no 

published or on-going clinical trials were yet done in Autism treatment. Thus, it may be too early to determine 

whether Prednisone is the effective Autism treatment due to the risks involved compared to unknown benefits. 

However, it is certainly worthy of further study in laboratory experiments for validation. The report by 

Massachusetts General Hospital indirectly confirms the discovered drugs and the effectiveness of the proposed 

methods. 

 

5. Conclusions 

In the present study, we proposed a new approach to identifying drug associations and interaction among their 

therapeutic groups by topology-based network analysis and demonstrated how the proposed topology-driven trend 

analysis can be utilized for new drug discovery. We first analyzed the current trend of autism research by drug 

association and therapeutic group networks. In addition, we adopted various approaches to drug prediction for new 

autism treatment, which was based on the following two assumptions of literature-based prediction in this research: 

1) Co-occurrence of entities has meaningful association. If drug (therapeutic group)-A co-occurs with drug 

(therapeutic group)-B, some kinds of relationship may exist between them, and the more frequently they co-occur, 

the closer they are related (Callon et al., 1991) and 2) An isolated drug (therapeutic group) in the network does not 

mean it has no relation with other drugs (therapeutic groups), while co-occurring pairs of drugs (therapeutic groups) 

are to be related. 

Three major findings were reported in the present study. First, the topology-driven trend analysis by the 

pathfinding algorithm for associative drugs coupled with the clique percolation algorithm helped us extract the 

related therapeutic groups to detect cliques for new drug discovery throughout the different periods. In particular, by 

mapping drug associations to either 1st-level or 2nd-level ATC classification codes, the proposed topology-driven 

trend analysis uncovered the new therapeutic groups of drugs to recommend plausible new treatments for autism. 

Second, in grasping the overall research trend in autism research, the study found that use of drugs associated with 

cross-therapeutic groups became pervasive recently, and the proportion of multi-disciplinary research reached 70% 
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in the last 10 years. Specifically, the study reported on that nervous drugs are the most important to autism 

medication treatment. In addition, therapeutic groups like dermatological, the genito-urinary system and sex 

hormones were paid more attention by the autism research community. Drugs in the therapeutic groups such as 

nervous system, cardiovascular system, and dermatology have been steadily popular over last 10 years. Furthermore, 

a medication treatment structure consisting of “N,” “C,” “H,” “S,” “D,” and “A” has been developed over last 10 

years as well, and became the primary medication approach to treating autism. Third, we discovered that four drugs, 

Tocilizumab , Tacrolimus, Prednisone, and Sulfisoxazole, are the promising drugs for autism treatment, which is 

worthy of further study in laboratory experiments with formal assessment of possible effects on symptoms, and 

investigation of dosage effects and treatment duration for autism treatment. 

The major limitation is that 13 drugs were not found in the ATC system, so we classified them to 2nd level 

according to their functions and components under the guidance of psychiatrists. Those drugs were marked by an 

asterisk (*) in Appendix 3.  

The present study predicted four drugs for autism treatment based of the literature-based network. In the 

future, we will further verify the drugs discovered by literature reports, cell experiments, and laboratory 

experiments. We also plan to conduct content analysis to supplement the findings reported in the present study.  
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Supplementary Material 

Appendix 1. The number of synonyms per ATC Class. In this research, we used DrugBank and PharmGKB to 

expand synonyms and include drugs that interact with the 145 drugs selected for the study. The total number of 

synonyms is 6,624, and the number of synonyms per ATC is listed. Appendix 1 can be downloaded from 

http://informatics.yonsei.ac.kr/tsmm/download/Appendix1.docx. 

Appendix 2. 34 cliques and important drugs identified from 1L1-1L5. Appendix 2 includes total 340 drugs and 

the top 10 ranked important drugs by PageRank per clique. The appendix can be downloaded from 

http://informatics.yonsei.ac.kr/tsmm/download/Appendix2.docx. 

Appendix 3. Categories of the 145 drugs in the ATC system. All of the 145 drugs are classified into basic groups 

(1st and 2nd level) according to the ATC classification system, in which active substances were divided into different 

groups according to their therapeutic charactersitics. Appendix can be is downloaded from 

http://informatics.yonsei.ac.kr/tsmm/download/Appendix3.docx. 


