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ABSTRACT
Computational prediction of in-hospital mortality in the setting of
an intensive care unit can help clinical practitioners guide care and
make early decisions for interventions. In this work, we train a Het-
erogeneous Graph Relational Model on Electronic Health Record
data and use the resulting embedding vector as additional informa-
tion added to an Convolution Neural Network model for predicting
in-hospital mortality. We show that the additional information pro-
vided from including time as a vector in the embedding captures
the relationships between medical concepts, lab tests, and diagnosis
and aids in predictive performance. We find that adding HGM to
a CNN model can increase the mortality prediction accuracy to a
certain extent. This framework can serve for a foundation for future
experiments involving more EHR data types on other important
healthcare prediction tasks .
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1 INTRODUCTION
Predicting in-Hospital mortality in the hospital Intensive Care Units
is crucial for patient care [7, 12], as it can help practitioners tailor
care and allow for earlier interventions . Electronic Health Record
(EHR) consists of information relating to patient encounters with a
health system, such as demographics, disease diagnoses, vital signs,
and medications, among others which are often used for machine
learning (ML)-based tasks in the biomedical space, such as mortal-
ity prediction [6, 13]. The inherent complexity of EHR data often
require complex modeling frameworks for robust performance for
these tasks, such as convolution neural networks (CNN), which
treats the time as horizontal dimensions and medical concepts as
vertical dimensions. [2, 8, 14]. For the vertical medical concept
features of many such CNN models directly concatenate these un-
ordered sets of raw data and use them as direct inputs[11]. This
scenario of providing features to CNN model is simple, straightfor-
ward, and often performs well in these health-related prediction
tasks. This strategy of inputting raw features, however, also dis-
regards the graphical structure and inner connectivity between
medical concepts[3, 4]. Furthermore, the medical events recorded
in EHR data are often sparse, as a result of missing or incomplete
data, which results in a dearth of information for CNN, which could
thereby affect performance model[2].

In this work, we propose to use and extend a Heterogeneous
Graph Model (HGM) to provide a patient embedding vector to fill
in missing gaps of information for training CNNmodel in EHR data.
The HGM model can captures the relationships between different
medical concept types (e.g., diagnoses and lab tests) due to its
graphical structure. Integrating the context between concept types
in a model can further facilitate capturing more complex patient
patterns and encode similarities. In the procedure of building the
HGMmodel, we also add an edge connection representing time that
reflects states of patient across their progression in the hospital (i.e.,
on admission and in the next hour). Therefore, after the HGMmodel
is trained, we can provide an additional patient embedding vector of
the next hour based on the patient embedding vector of the current
hour. This addition of time could provide extra information to the
embedding vectors from the HGM model of time points where data
are missing.
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In this work, we show that by concatenating these additional
time-based embedding vectors to the raw features as the final
feature input to CNN model, we can increase performance of in-
hospital mortality prediction to a certain degree compared to an-
other advanced modeling strategy, specifically a CNN model with
pure raw data as the input feature.

2 METHODOLOGY
2.1 Data Set
We conduct our experiment on de-identified EHR data fromMIMIC-
III. This data set contains various clinical data relating to patient
admission to a hospital ICU, such as demographics, lab test results,
and disease diagnoses. We collected data for 5956 patients, extract-
ing lab tests within every hour from admission. There were a total
of 409 unique lab tests and 3387 unique disease diagnoses observed.
We cropped the lab test events into six, 12, 24, and 48 hours prior
to patient death or discharge from ICU. From these data, we sought
to predict mortality using two modeling strategies and diving the
data into 70% for training and 30% for testing.

2.2 CNN model
CNNs are best known by achieving tremendous success on image
processing tasks [9] due to its ability to extract distinct groups of
features in two dimensional data, which increases the accuracy for
classification tasks. In this work, we use CNN model as the baseline
method for mortality prediction.

As a CNN model requires two dimensional inputs, we treated
time as the horizontal dimension and medical events as the vertical
dimension. In the dimension of time, we recorded every event that
happened within every hour increments counting down from the
patient death or discharge time. In the baseline model, the vertical
dimension was constructed by concatenating two medical event
vectors: lab tests and diagnoses. Every entry of the lab test vector
records the value of a specific lab test for that hour; for the diagnosis
vector, the i-th entry is 1 if the i-th diagnosis is observed, and we
concatenate these two vectors to form a medical event happened
in one hour.

The prediction is a binary classification task on predicting mor-
tality.We used a softmax layer with two dimension as the prediction
layer.

2.3 Building the Heterogeneous Graph Model
The features used in baseline CNN model were purely raw data,
which lacks considration of the inner relations between medical
concepts. We used an HGM to capture these inherent relationships
by creating three different type of nodes: patient, lab test, and diag-
nosis. These different type of nodes are connected by three relation
types: tested, diagnosed, and time. These could be represented with
two triples:

𝐿𝑎𝑏
𝑡𝑒𝑠𝑡𝑒𝑑−−−−−→ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 : {𝐿𝑎𝑏𝑡𝑒𝑠𝑡, 𝑡𝑒𝑠𝑡𝑒𝑑, 𝑝𝑎𝑡𝑖𝑒𝑛𝑡}

𝑃𝑎𝑡𝑖𝑒𝑛𝑡
𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑
−−−−−−−−−→ 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 : {𝑝𝑎𝑡𝑖𝑒𝑛𝑡, 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑, 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠}

𝑃𝑎𝑡𝑖𝑒𝑛𝑡
𝑡𝑖𝑚𝑒−−−−→ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑛𝑒𝑥𝑡_ℎ𝑜𝑢𝑟 : {𝑝𝑎𝑡𝑖𝑒𝑛𝑡, 𝑡𝑖𝑚𝑒, 𝑝𝑎𝑡𝑖𝑒𝑛𝑡_𝑛𝑒𝑥𝑡_ℎ𝑜𝑢𝑟 }

the testing relationship shows whether a specific lab test was given
to a patient at a specific time, the diagnosed relationship shows
whether a patient was diagnosed with a disease, the time relation-
ship captures the patient condition at a specific time, and his/her
condition in the following hour.

To represent the lab test and diagnosis node types, we separately
use multi-hot encoding vector: 𝑋𝑙 ∈ {0, 1}409 and 𝑋𝑑 ∈ {0, 1}3387,
the i-th entry is 1 indication of the whether a specific lat test was
performed or a specific diagnosis was given. The patient node is
also represented as a vector 𝑋𝑝 ∈ R477 containing the numerical
values measured from lab tests at that time.

2.4 Embedding Different Type of Nodes Into
the Same Latent Space

For capturing the inner relations between different medical events
related to a patient, we utilized the TransE model[1] to project
different type of nodes into a same latent space, then classified
those nodes that are connected as a similar group. Meanwhile, we
classified the disconnected nodes into a dissimilar group.

The TransE model uses a set of 1) projection matrices and 2) re-
lation vectors. After initialization, projections and translations can
be optimized end-to-end. Heterogeneous nodes 𝑋𝑝 , 𝑋𝑙 , 𝑋𝑑 are pro-
jected into a shared latent space with trainable projection matrices
𝑊𝑝 ,𝑊𝑖 ,𝑊𝑑 using the nonlinear mappings:

𝑐𝑝 = 𝜎 (𝑊𝑝 · 𝑋𝑝 )
𝑐𝑖 = 𝜎 (𝑊𝑖 · 𝑋𝑖 )
𝑐𝑑 = 𝜎 (𝑊𝑑 · 𝑋𝑑 )

Where 𝜎 is a non-linear activation function and 𝑐𝑝 , 𝑐𝑖 , 𝑐𝑑 are the
latent representations of each type of node. Despite the fact that
the EHR-space uses different dimensions for different data types
𝑋𝑝 , 𝑋𝑖 , 𝑋𝑑 , all nodes types were projected into the same latent space.
Then we apply translation operations to link these different types
of nodes:

𝑐𝑝 = 𝑐𝑖 + 𝑟𝑖𝑝
𝑐𝑑 = 𝑐𝑝 + 𝑟𝑝𝑑
𝑐
′
𝑝 = 𝑐𝑝 + 𝑟𝑡𝑖𝑚𝑒

Where 𝑟𝑖𝑝 and 𝑟𝑝𝑑 are the relation vectors connecting patients
to lab testss and diagnoses, respectively. Note that 𝑐

′
𝑝 is the patient

latent representation in the next hour corresponding to 𝑐𝑝 , 𝑟𝑡𝑖𝑚𝑒

captures this relationship. Both 𝑐
′
𝑝 and 𝑐𝑝 use the same projection

matrix𝑊𝑝 .

2.5 Optimization Model
For learning the HGM, we apply a heterogeneous skip-gram opti-
mization model [5],which increases the proximity between those
embedding points whose corresponding graph nodes are often con-
nected after the projection and translation operations:

max
∑
𝑢∈𝑉

∑
𝑡 ∈𝑇𝑉

𝑙𝑜𝑔𝑃𝑟 (𝑁𝑡 (𝑢) |𝑓 (𝑢)) (1)

Where 𝑁𝑡 (𝑢) are the heterogeneous neighborhood vertices of cen-
ter node 𝑢, and 𝑡 ∈ 𝑇𝑉 is the node type. Here, we learn effective
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Figure 1: (A) A graphical representation of the HGM for patient, lab test, and diagnosis data. (B) All graph nodes in (A) have
a corresponding vector like those shown in (B). The vector representations can be projected into a shared space with the
TransE method, and this projection is optimized for retaining relations in the original data in the embedding via skip-gram
optimization. Finally, these vectors are concatenated into the CNN model for mortality prediction.

node embeddings by maximizing the probability of correctly pre-
dicting the a patient node’s associated lab tests and diagnoses. The
prediction probability is modeled as a softmax function:

𝑃𝑟 (𝑐𝑡 |𝑓 (𝑢)) =
𝑒 ®𝑐𝑡 · ®𝑢

𝑍𝑢
(2)

Where ®𝑢 is the latent representation of patient 𝑢, ®𝑐𝑡 is the latent
representation of lab and diagnosis neighbors of node of𝑢, and ®𝑐𝑡 · ®𝑢
is the inner product of the two embedding vectors representing
their similarity. 𝑍𝑢 is the normalization term 𝑍𝑢 =

∑
𝑣∈𝑉 𝑒 ®𝑣𝑡 · ®𝑢 .

Where 𝑍𝑢 integrates over all vertices. Therefore, equation 1 could
be simplified to:

L𝑠 = −
∑
𝑡 ∈𝑇

∑
𝑢∈𝑉

[ ∑
𝑐𝑡 ∈𝑁𝑡 (𝑢)

®𝑐𝑡 · ®𝑢 − 𝑙𝑜𝑔𝑍𝑢

]
(3)

Numerical computation of 𝑍𝑢 is intractable for very large graphs
with millions of nodes. So we adopt negative sampling strategy [10]
to approximate the normalization factor, and the optimization func-
tion becomes:

L𝑠 = −
∑
𝑡 ∈𝑇

∑
𝑢∈𝑉

[ ∑
𝑐𝑡 ∈𝑁𝑡 (𝑢)

𝑙𝑜𝑔𝜎 ( ®𝑐𝑡 · ®𝑢) +
K∑
𝑗=1

𝐸𝑐 𝑗∼𝑃𝑣 (𝑐 𝑗 )𝑙𝑜𝑔𝜎 (− ®𝑐 𝑗 · ®𝑢)
]

(4)
where 𝜎 (𝑥) = 1

1+exp(−𝑥) , K is the number of negative samples.
𝑃𝑣 (𝑐 𝑗 ) is the negative sampling distribution. Equation 4 is the final
objective function we are using for heterogeneous graph learning.

2.6 Details of the Training Process
For training our HGM, we performed heterogeneous neighbor-
hood sampling by its one-hop connectivity, and picked 𝑃𝑎𝑡𝑖𝑒𝑛𝑡

node as the center node, since it has one-hop connections to both
𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 and 𝐿𝑎𝑏_𝑡𝑒𝑠𝑡 nodes. Specifically, for one training center
𝑃𝑎𝑡𝑖𝑒𝑛𝑡 node, we uniformly sampled 10 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 one-hop direct
connected nodes, and 10 𝐿𝑎𝑏_𝑡𝑒𝑠𝑡 one-hop direct connected nodes.
From these sampled 10 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 nodes, we sampled another 10
𝑃𝑎𝑡𝑖𝑒𝑛𝑡 nodes, each having connections with each of the prior 10
𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 nodes. In this way, we connected the center patient node
with similar other 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 nodes by their common diagnoses. We

also sample the patient node which belongs to the next hour corre-
sponding to the center 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 node. For negative sampling [10],
we performed uniform sampling through all 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑠 node and
𝐿𝑎𝑏_𝑡𝑒𝑠𝑡 nodes that do not have one-hop connections with the cen-
ter training patient node. We then projected these different nodes
into same latent space through TransE model. After unifying the
embeddings for different node types, each concept is represented as
a point in a Euclidean space. In this space, we can measure the sim-
ilarity between any two points by the angle of the vectors between
them and the origin.

2.7 Incorporating the HGM Embedding Vector
into CNN Model

With the Heterogeneous Graph Embedding model, feeding the
model with a raw patient data will result in a patient embedding
vector output. This embedding vector encodes not only a patient’s
current lab test results, but also their relation with different kind of
diagnoses, lab tests, and subsequent items in time.

We concatenated this outcome embedding vector on the baseline
CNN vertical feature dimension to form a final feature vector within
every hour, and use these new features as the CNN input to predict
mortality. In addition, since we also encode time as a relation type,
we can infer the embedding vector of time points with missing data
based on information from the previous hour. We visualize this
procedure in the schematic Fig 1.

3 EXPERIMENTS
We aimed to predict mortality in 6, 12, 24, and 48 hours prior to
death and/or discharge. The CNNmodel wass used as the prediction
model which was introduced in section 2.2. We compared three
different scenarios on testing the impact of adding HGM embedding
vectors as additional features to the framework:

• HGM:Concatenate the patient embedding feature fromHGM
model with raw diagnosis vector.

• CNN: Concatenate the raw lab test feature with diagnosis
vector.
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Table 1: Mortality Prediction Accuracy

Hours Models

HGM CNN HGM+CNN

6 0.776 0.766 0.803
12 0.775 0.773 0.807
24 0.771 0.775 0.806
48 0.775 0.772 0.801

Figure 2: The ROC curve derived experiments on the testing
data

• HGM+CNN: Concatenate the HGM patient embedding vec-
tor, the raw lab test feature vector, and the diagnosis vector.

We split the data into 70% for training and 30% percent for testing.
The primary output metric was prediction accuracy, specifically the
number of patients with correctly detected predictions divided by
the total patents tested. We show the results of these experiments in
Table1. We show the receiver operator characteristic (ROC) curve
of the performance of these tasks on the test data in Fig.2

The testing results shows that the HGM+CNN outperforms both
the basic HGM and CNN models, indicating the additional infor-
mation added from the HGM patient embedding of time increases
the accuracy of predicting in-patient mortality. The prediction ac-
curacy of using different hours prior to death&discharge did not
largely vary, indicating that different time windows did not have
a big impact on the result on this particular task. The prediction
accuracy in the CNN model which uses the concatenation of raw
lab test and diagnosis data drops in the case of six hours prior to
death and/or discharge, but not in the other two models, indicating
that using the embedding features from HGM model was more
robust than the raw data.

4 DISCUSSION AND CONCLUSION
In this work, we propose a method to incorporate patient embed-
ding vector from HGM model into the raw data for CNN model in
an attempt to provide more information to CNN model. We assess
the value of this implementation on a task of predicting mortality
in EHR data. The results of our experiment shows the superior
performance of adding the additional patient embedding vector,
which was pretrained from the HGM model, compared to pure raw
features as the input to CNN model. In one aspect, this is due to the
fact that the HGM embedding vector captures additional relational
information between different medical concepts, thus providing

additional information to CNN model. In another aspect, we fill in
the missing EHR data in a specific hour by deriving the embedding
vector inferred from the patient embedding of the previous hour.
Therefore, more information was provided in a time sequence to
the CNN model, resulting in an increased accuracy in predicting
mortality rates within this modeling framework.

Furthermore, we observed that purely concatenating the HGM
embedding vector with diagnosis feature vectors did not increase
the accuracy against using the concatenation between raw lab test
and diagnosis feature vectors. This finding indicates that the raw
lab test feature vector could provide unique information for CNN to
utilize. At the same time, this finding indicates that the embedded
patient vector from HGM model could lose some information from
the raw lab test feature along the process of projecting these data
into a low dimensional latent space. By concatenating all feature
vectors, we aim to preserve the information from different data
points, which helped achieve higher mortality prediction accuracy.
We hope the findings from this work can be expanded in future
directions that may add more EHR node types and time components
on a variety of other important health-related predictive tasks.
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