
Data Mediation Support for Triple Space Computing

Omair Shafiq1, François Scharffe1, Reto Krummenacher1,
Ying Ding1,2, Dieter Fensel1,2

1 Digital Enterprise Research Institute (DERI)
University of Innsbruck (UIBK)

6020 Innsbruck, Austria.

2 Electronic WebService GmbH (eWS)
6020 Innsbruck, Austria.

Email: {omair.shafiq,francois.scharffe,reto.krummenacher,

ying.ding,dieter.fensel}@deri.org

Abstract

Triple Space Computing is an emerging technology
for communication and coordination of different
semantic technologies. It has been achieved by
extending Tuple Space computing to support RDF as
Triple Space Computing. It can play an important role
by acting as global middleware providing support for
collaboration of different semantic technologies.
Several participants from Semantic Web and Semantic
Web Services applications, distributed worldwide
communicate with each other via triple space due to
which the possibility of heterogeneity in the RDF
schemas and instances among the communicating
participants may arise. In order to resolve this
heterogeneity issue, data mediation becomes an
important part of the Triple Space Computing
architecture. In this paper we introduce data
mediation support for Triple Space Computing and
further explain how mismatches occur in RDF data,
presents an Abstract Mapping Language to specify
mapping to cover the heterogeneity, defines
architecture of the mediation engine and its interfaces,
processing of mediation mapping rules, grounding of
mediation rules as RDF triples and finally evaluates
with examples.

1. Introduction

Triple Space Computing [9] is an emerging
technology as extended Tuple Space Computing to
support Semantic Web [1] technologies RDF and
enables asynchronous communication among Semantic
Web Services based on persistent publication and read
of RDF triples. It provides a shared space to multiple

participants communicating with each other. However,
due to the diversity in the nature of different
communicating participants, the possibility of the
heterogeneity in metadata (RDF schema) of different
participants arise which makes mediation an important
issue to be resolved.

Mediation in Triple Space Computing is concerned
with handling heterogeneity by resolving possibly
occurring mismatches among different triples. There
can be a possibility that different TSC participants
communicating via triple spaces, containing different
data models which makes mediation an important issue
to be taken care of. So, a RDF instance in a RDF
schema of one TSC participant is needed to be
represented in the RDF schema of the other TSC
participant without altering or loosing the semantics.
For this reason, a mapping language is needed that
specifies how to trans-form RDF triples according to
different RDF Schemas of different participants. The
mediation rules are to be specified at design time
which will be processed by a mediation engine in the
TSC framework at runtime in order to carry out the
mediation during the communication among TSC
participants.

The paper is structured as follows: it introduces
Triple Space Computing for Semantic Web Services in
section 2. Triple Space Kernel as realization of Triple
Space Computing paradigm is described in section 3.
In section 4, we present an abstract mapping language
and its use in TSC data mediation, specifies mediation
mapping rules in the abstract mapping language,
specifies mediation API interface, architecture and
working of mediation engine in TS kernel and
grounding of mediation mapping rules as RDF triples.
Section 5 evaluates with examples and finally draws
conclusion.

Figure 1: Triple Space Computing as collaborative global middleware

2. Triple Space Computing for Semantic
Web Services

Semantic Web Services promise seamless
interoperability of data and applications on a semantic
level, thus turning the Web from a world-wide
information repository for human consumption only to
a device of distributed computation. To this end,
appropriate semantic descriptions of Web services and
intelligent mechanisms working upon this need a solid
basement in terms of the underlying semantically
enabled communication technologies. Here, Triple
Space Computing (TSC) comes into play which
defines the technologies and settings needed to
develop a new paradigm for Web service
communication that complies with the basic principles
of the Web, i.e. state-less communication of resources,
persistent publication of resources, unique
identification of resources and non-destructive read
access to resources.

The basic foundation here is Tuple Space
computing. The tuple space model not only decouples
the three orthogonal dimensions involved in
information exchange: reference, time, and space, but
also offers a high-level abstraction, namely the
communication via reading and writing data in a space.
This offers the advantage of re-moving the complexity
of message exchange based systems and of the APIs
currently used for building Web services. It also offers
advantages in terms of reduced development costs,
simplicity, extensibility, expressiveness, easy
debugging, scalability, failure tolerance and recovery.

This can benefit the construction, analysis, testing and
reusability of distributed applications.

Triple Space Computing further adds compatibility
with Web design principles, thus overcoming the
deficiencies of message-based communication.
Therefore, it adds some additional features that are
currently lacking in the tuple space paradigm, i.e. URIs
as a unique and well-defined reference mechanism that
has proven suitability on Web scale, namespaces as a
separation mechanism for distinguishing chunks of in-
formation by qualified names, publication-based
communication paradigm that scales because of its
simple and universal dissemination manner,
interlinking of resources by use of foreign URIs as
hyperlinks.

Triple Space Computing will be used as
communication paradigm for Semantic Web Services
[18] and may also be for other similar technologies like
Semantic Grid Services [14]. It improves the current
communication paradigm of Web services by
providing asynchronous invocation support. It acts as
third party among the Web service clients and Web
services. When a Web service client sends a request to
some Web service, it should publish data in the Triple
Space Computing middleware. Similarly, Web service
can receive the invocation request from client by
reading data from the Triple Space middleware. The
same applies to semantically described Web services
as Semantic Web Services. We started to investigate
that how the Triple Space Computing could be applied
to our implementation for Semantic Web Services i.e.,
The Web Service Execution Environment (WSMX)
[17] which is a reference implementation of Web
Services Modeling Ontology (WSMO) [2]. The use of

Triple Spaces for asynchronous communication
between different WSMXs brings them a step closer to
their architectural goal, i.e. to support greater
modularization, flexibility and decoupling in
communication of different WSMX nodes. Similarly,
it enables WSMX to be highly distributed and easily
accessible. Furthermore, being a third party element
Triple Space Computing can resolve communication
disputes that may arise.

3. Triple Space Kernel

The Triple Space kernel (TS kernel) is the concrete
realization of Triple Space Computing paradigm which
can be used to implement both Triple Space servers
and heavy clients. In the former case it also provides a
proxy component, which allows light clients to
remotely access the server. The TS kernel itself
consists of multiple components, i.e. operations and
security layer, mediation engine, coordination and data
access layer. Figure 2 shows the abstract architecture
and a brief overview is given below.

The operations and security layer executes Triple
Space operations issued by participants. Heavy clients
run in the same address space as the TS kernel, and the
TS kernel is accessed by its native interface. Light
clients use TS proxies to access the TS kernel of a
server node transparently over the network. As a
variation a light client can access a TS kernel via a
standardized protocol, e.g. HTTP. In this case a server
side component, e.g. a servlet, translates the protocol
to the native TS kernel interface. The execution of a
TS operation includes verification of security
constraints, maintaining state of blocking operations
and invocation of the underlying coordination layer.
The security management API is used to define and
change security configurations [19] such as access
control for spaces or named graphs [20].

Figure 2: Triple Space Kernel

The mediation engine resolves heterogeneity issues

by providing mappings for possibly occurring
mismatches among different RDF triples. It is due to
the possibility that different participants may have
different RDF schemas while communicating via triple
space. Mapping rules for mediation are provided to the
mediation engine at design time and are processed by it
at run time in order to resolve heterogeneities by
identifying mappings. The mediation management API
provides methods to turn on/off the usage of mediation
engine, to add, remove and replace mediation rules.

The coordination layer implements transaction
management, i.e. the creation, commit and abort of a
transaction and guarantees that concurrent operations
are processed consistently. It accesses the local data
access layer to retrieve data from a space and to apply
permanent changes to a space. Further, if a Space is
spanned by multiple TS kernels, the coordination layer
is responsible for inter-kernel communication to
distribute and collect data and to assure that all
involved kernels have a consistent view to a space.

The data access layer acts as a gateway to the
underlying data storage. It abstracts from the
underlying details of storage systems. All data stores
should be accessed through this layer. This layer
provides generic interfaces for accessing different data
sources. Therefore, this layer is responsible for
providing accessibility to every data store used in TSC.

Figure 2 shows briefly that how different Triple
Space kernels can coordinate with each other to make
the Triple Space Computing as global communication
and coordination middleware for effective
collaboration of different technologies based on
Semantic Web, Web Services and Semantic Web
Services.

4. Mediation in TSC

This section explains the mediation process in TSC
which introduces the specification and processing of
mapping rules during the communication, i.e. from
RDF schema of requesting participant to the RDF
schema of the target participant. A mapping rule
contains a link between rdfs:Resources from the source
schema to the target schema. Figure 3 below shows the
mediation process which is RDF schema level
mediation. The mapping rule can also link different
particular RDF instances, which will be instance level
mediation. The mediation process in TSC will follow
the approach as, the instance I of a RDF schema R
would be mapped to the instance I′ of the RDF schema
R′ using some mapping rule MR. Where the mapping

rule should be created for each pair of RDF schema at
design time.
The mediation rules are to be specified in an abstract
mapping language and to be provided at design time. It
would be processed by the mediation engine to identify
different possible heterogeneities at instance and
schema level and carry out mediation according to the
mediation rules at runtime during the communication
of participants.

Figure 3: Mediation in Triple Space Computing

The mediation engine is used when a template is
provided by a participant to match with RDF triples
available in triple space storage. The mediation engine
first of all extracts information about participant’s
desired resources and checks for mediation by
processing the available mediation rules provided to it
at design time. If any rule is found related to a resource
mentioned in template, it means that the resource in
template can be mapped to one or more resources
available in the triple space storage as mentioned in the
rule. As a result, separate templates will be generated
for all the corresponding matched resources according
to the mediation rule. All the new generated templates
along with the original one will be matched during the
search process by query engine and results will be
returned to the user.
Mapping rules express the correspondence among
different RDF schemas and instances. In this section,
we describe the details of specification of the
mediation rules in order to explicitly identify the
relations that exist among resources of different RDF
triples. The mapping rules are also proposed to be
represented as RDF triples which could easily be

stored on the same triple space storage instead of
having a separate storage mechanism to store the rules.

4.1. Abstract Mapping Language

This section presents a brief overview of an abstract

mapping language that allows expressing mediation
mapping rules. It was developed jointly by Web
Service Modeling Ontology Working Group (WSMO)
[15] and Ontology Management Working Group
(OMWG) [16]. It supports both schema and instance
level mappings. It allows various types of mappings
i.e. one to one, one to many, many to one and many to
many mappings with the help of a set of operators that
are introduced to link together different entities. It also
contains constructs to condition the validity of the
mappings.

The mapping language has abstract syntax
expressed in Extended Backus-Naur Form (EBNF). It
allows optional elements that could be mentioned
between square brackets ‘[’ and ‘]’. Elements between
curly brackets ‘{’ and ‘}’ can have multiple
occurrences. Each element of ontology (in this case,
RDF schema), whether it is a class, attribute, instance,
or relation, is identified using a IRI which is an
extension of a URI. The language also allows concrete
data values, i.e. type literals, plain literals, numeric
values and strings. A mapping can be either
unidirectional or bidirectional. A unidirectional
mapping from a source to a target means that the
source expression is subsumed by the target one. A
bidirectional mapping means the source and the target
expressions are equivalent. Simple mapping
expressions are expressed by replacing the class,
attribute and relation expressions with corresponding
identifiers of the respective class attribute or relation.
A set of expressions from the abstract mapping
language that can be used for mediation between RDF
schema and instances are as follows:

Mapping expression = {logical_expression}
lbrace annotation* logicalexpression rbrace

| {class_mapping} classmapping lpar
annotation* measure? directionality? [first]:
classexpr [second]: classexpr classcondition*
logicalexprbrace? rpar

| {relation_mapping} relationmapping lpar
annotation* measure? directionality? [first]:
relationexpr [second]: relationexpr
relationcondition* logicalexprbrace? rpar

| {instance_mapping} lpar annotation* [first]:
instanceid [second]: instanceid rpar

Where: annotation = t_annotation lpar
propertyid propertyvalue rpar
 measure = t_measure lpar float rpar

lpar = '(', rpar = ')', lbracket
= '[', rbracket = ']', lbrace
= '{', rbrace = '}'

4.2. Mediation rules specification in Abstract
Mapping Language

Mapping rules in TSC will express the

correspondence between different resources in
different RDF triples. In this section, we describe the
details of specification of the mediation rules in order
to explicitly identify the relations that exist among
resources among different RDF triples. The mapping
rules are also proposed to be represented as RDF
triples which could easily be stored in same Triple
Space instead of having a separate storage mechanism
to store the rules. In TSC, mappings are always
supposed to be resource to resource mapping among
different RDF triples. It can either be an instance level
mapping or schema level mapping and there are further
two options in each type of mapping in order to
explicitly specify, whether it is a unidirectional or
bidirectional.

1) resource A is equivalent to resource B
It is a bidirectional mapping which means that
resource A can be mapped to resource B and
resource B can also be mapped to resource A

2) resource A subsumes resource B
It is a unidirectional mapping which means
that resource A can be mapped to resource B
whereas resource B cannot be mapped to
resource A

Figure 4: Mapping possibilities among RDF triples

While representing the mappings among the resources
of RDF triples, there are certain constraints that exist
which do not allow mappings between Subject and
Predicate or Object and Predicate of the RDF triples.
Figure 4 below explains all possibilities of mappings in
a single snapshot.

• A subject or object can be mapped to a

subject or object. Mapping will be carried
out using rdfs:subClassOf, i.e. C1
rdfs:subClassOf C2

• A predicate can be mapped to a predicate.
Mapping will be carried out using
rdfs:subPropertyOf , i.e. P1
rdfs:subPropertyOf P2

• A subject or object cannot be mapped to a
predicate and vice versa

Based on the assumptions mentioned above for

data mediation in Triple Space Computing, the abstract
mapping language can be used to specify the mappings
expressions among classes, properties of RDF schema
and instances. Given below are set of expressions
along with their descriptions that allow specifying the
mediation mapping rules. Table 1 below provides the
set of expressions for mediation mapping rules along
with a brief description.

Abstract Mapping

Language
Description

T(
MappingDocument(
A
source_exp
target_exp
annotation1 ...
annotationn
expression)
)

Provides a start point to
the document describing
mapping expressions to
bind the source and target
schemas.

T(
classMapping(
annotation1 ...
annotationn
directionality
classExpr
classExpr
classCondition1 ...
classConditionn
logicalExpression)
, A)

Specifies mapping
expressions between two
classes, defines type of
mapping (i.e.
unidirectional or
bidirectional), mapping
conditions (i.e. one to
one, one to many, many
to one and many to
many).

T(
relationMapping(
annotation1 ...
annotationn
directionality
relationExpr
relationExpr
relationCondition1 ...
relationConditionn
logicalExpression)
, A)

Specifies mapping
expressions between two
relations (properties),
defines type of mapping
(i.e. unidirectional or
bidirectional), mapping
conditions (i.e. one to
one, one to many, many
to one and many to
many).

T(
instanceMapping(
annotation1 ...
annotationn
instance1

Specifies mapping
between two instances of
ontologies using class-

Figure 5: Architecture of the TSC mediation engine

instance2
, A)

mapping, relation-
mapping as mentioned
above.

Table 1: Mapping rules in abstract mapping language

4.3. Architecture of TSC Mediation Engine

This section presents architecture of the mediation

engine inside Triple Space kernel that helps query
engine to find out all the mediation mappings before it
actually starts template matching. The design and
integration of the mediation engine has been carried
out in such a way that it acts as plug-in and can be
used or not as required. Figure 5 below shows an
abstract architecture of the mediation engine for Triple
Space kernel. A brief explanation of individual
components is given below followed by a description
of overall working.

The mediation management interface binds the
mediation engine with user interface in order to allow
participants to interact with the mediation manager to

turn on or off the usage of the mediation engine before
template matching and to add, replace or remove the
mapping rules. Mediation manager inside the
mediation engine receives and serializes the mapping
rules in abstract mapping language as set of RDF
triples on Triple Space. The system interface allows
the operations layer to communicate with mediation
engine in order to find out any corresponding RDFS
resources using the mediation mapping rules before
search for RDF triples starts. The template parser
receives template provided by a template handler in
operation layer and parses out all RDFS resources
values in there. The expression generator pulls out
the set of RDF triples (mappings rules in abstract
mapping language serialized as set of RDF triples) and
reformulates a mapping expression out of it. The
mediation mapper is the core component of
mediation engine and processes the mapping rules for
all the RDFS resources from template provided by
operation layer in order to find out any corresponding
RDFS resources. The template generator receives a
set of corresponding RDFS resources from mediation

mapper and generates multiple templates accordingly
and finally forwards it to query engine to make a
search in the triple space.

The working of TSC mediation engine starts when
users (TSC participants) add mediation mapping rules
via mediation management interface. The mediation
manager takes care of serialization of mediation rules
in the Triple Space storage as RDF triples. The
mediation engine manager also helps adding, replacing
and deleting the mapping rules. When a TSC
participant wants to search something from the triple
space, the operation layer generates a template which
contains the information about required RDF triples
and forwards it to the system interface of the mediation
engine. The template parser in the mediation engine
receives the template and parses out all the RDF
schema resources mentioned in template and forwards
it to mediation mapper. At the same time, the
expression generator checks from triple space for any
mediation mapping rules serialized as RDF triples and
generates mapping expressions and forwards it to the
mediation mapper. The mediation mapper being core
of the TSC mediation engine executes the mapping
expressions against the RDF schema resources
(provided by template parser) and finds out any
corresponding set of RDF schema resources. All the
discovered set of RDF schema resources from
mediation mapping rules are forwarded to template
generator which encloses the RDF schema resources in
templates and sends it back to operations layer. After
all the above mentioned process, operations layer can
forward the required triples to coordination layer and
down to data access layer to search the required triples
according the RDF schema resources mentioned by
TSC participant along with the corresponding one
found out by mediation process.

4.4. Mediation API interface specification

Two interfaces have been proposed in the TSC

mediation engine. The mediation management
interface allows users or TSC participants to access the
mediation engine. Whereas, the system interface of the
mediation engine allows operations layer in the Triple
Space Kernel to interact with mediation engine to
check for corresponding resources needed to be
considered by query engine while searching in triple
space.

The mediation mapping rules specified in the
abstract mapping language can be added, removed or
replaced from the TSC mediation engine using the
mediation management interface. Moreover, as
described above that mediation engine is an optional
component in the TSC framework and can be turned

on or off using mediation management interface. The
table below provides a brief overview of operations in
the interfaces of TSC mediation engine.

Operations Description

Mediation management interface
useMediationEngine
(Boolean): void

Mediation Engine can be
turned on or off as a
plugin.

addRule(String rule):
URI

A participant provides a
mediation rule expressed
using abstract mapping
language

removeRule (URI): void
A participant removes a
mediation rule by
providing a URI to it.

replaceRule (String
newRule, URI old): URI

A participant replaces a
mediation rule. Basically
composed of remove the
old mediation rule using
RemoveRule and adds
new one using AddRule.

System interface

mediationCheck
(Template t):
Set<Template>

Check for any mapping
that exists for a particular
rdfs:Resource in a triple.

Table 2: Mediation API interface

4.5. Grounding of mediation rules in RDF

As mentioned in while defining architecture of
mediation engine, mappings rules are to be serialized
as RDF triples to store them in Triple Space along with
a URI to access it. Simple mappings can be realized as
single triples along with a URI i.e. as quads whereas,
complex mappings which could be based on multiple
simple mappings can be stored as multiple quads
forming a named graph. So, the mediation rules will
look like quads where each quad having a source
resource (the resource which is to be matched)
represented as subject, mapping type (equivalent or
subsume) represented as property and target resource
(the resource with which source resource is to be
mapped) represented as object. The forth part will be
the URI to access this mapping rule. The mediation
engine will contain a list of URIs of quads or named
graphs to access the quads in the Triple Space having
the mediation rules. The mapping rules will be stored
and referred to by the mediation engine as (mediation
specific) named graphs in the Triple Space.

For two different categories of possible mappings
between the resources i.e. unidirectional and
bidirectional (equivalent and subsume). The mappings
mentioning equivalence of the two resources will be
serialized as two quads having same URIs in order to
explicitly mention the bidirectional nature of mapping
among the resources. Whereas, a subsume mapping
rule will be stored as a single quad mentioning the
unidirectional nature of mapping among the resources,
i.e. shown in the examples section below.

Based on the requirements and assumptions made
above, the mediation mapping rules in abstract
mapping language can be grounded into RDF triples as
shown in the table below.

Mapping rules in AML Corresponding RDF

triples
T(
MappingDocument(
A
source_exp
target_exp
annotation1 ...
annotationn
expression)
)

A rdf#type
map#mappingDocument
T(source_exp,A)
T(target_exp,A)
T(annotation1,A) ...
T(annotationn,A)
T(expression
, A)

T(
classMapping(
annotation1 ...
annotationn
directionality
classExpr
classExpr
classCondition1 ...
classConditionn
logicalExpression)
, A)

A map#classMapping _:X
T(annotation1, _:X)
...
T(annotationn, _:X)
T(directionality, _:X)
_:X map#hasSource _:Y
_:X map#hasTarget _:Z
T(classExpr, _:Y)
T(classExpr, _:Z)
T(classCondition1,
_:X)
...
T(classConditionn,
_:X)
T(logicalExpression,
_:X)

T(
relationMapping(
annotation1 ...
annotationn
directionality
relationExpr
relationExpr
relationCondition1 ...
relationConditionn
logicalExpression)
, A)

A map#relationMapping
_:X
T(annotation1, _:X)
...
T(annotationn, _:X)
T(directionality, _:X)
_:X map#hasSource _:Y
_:X map#hasTarget _:Z
T(relationExpr, _:Y)
T(relationExpr, _:Z)
T(relationCondition1,
_:X)
...
T(relationConditionn,
_:X)
T(logicalExpression,
_:X)

T(
instanceMapping(
annotation1 ...
annotationn
instance1
instance2
, A)

A
map#individualMapping
_:X
T(annotation1, _:X)
...
T(annotationn, _:X)
_:X map:hasSource
instance1
_:X map:hasTarget
instance2

Table 3: Mapping rules in abstract mapping language
and their corresponding RDF triples

5. Examples

This section evaluates the mediation engine in
Triple Space kernel with some real life examples by
presenting different types of possible mismatches
among RDF triples in the triple space storage and
mappings that are needed to be specified in order to
overcome the mismatches. Two sets of RDF triples are
shown below in Table 4 about same information but
represented in different ways:

• the project in first set of triples is mentioned

as TSC whereas it is mentioned as Triple
Space Computing in the second set of triples

• hasDeliverable property in first set of triples
is mentioned as to hasProjectOutput property
in the second set of triples

• doap:Project object in the first set of triples is
mentioned as :ResearchProject

First set of Triples

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns"
xmlns:project="http://www.deri.org/ns">
 <rdf:Description
rdf:about="http://www.deri.org/tsc">

<project:hasDeliverable>D1.3</project:hasDeliv
erable>

<rdf:type>"http://www.projects.org/doapProject
"</rdf:type>
 </rdf:Description>
</rdf:RDF>

--

Second set of Triples

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:research="http://www.tuwien.ac.at/ns">
 <rdf:Description
rdf:about="http://www.tuwien.ac.at/triple_spac
e_computing">

<research:hasProjectOutput>D1.3</research:hasP
rojectOutput>

<rdf:type>http://www.projects.org/researchProj
ect</rdf:type>
 </rdf:Description>
</rdf:RDF>

Table 4: Two sets of RDF triples requiring mediation

The following mappings have to be defined and
provided to the mediation engine before hand in order
to resolve the above mentioned mismatches before
searching the triple space, i.e.

1) TSC is equivalent to Triple Space Computing
2) hasDeliverable is equivalent to

hasProjectOutput
3) doap:Project subsumes :ResearchProject

The first mapping is an instance level mapping as it is
concerned with mapping particular values of different
RDF triples. The mediation mapping rule in abstract
mapping language will be as follows:

T (instanceMapping (annotation (propertyid
propertyvalue) bidirectional “TSC” “Triple
Space Computing”)

The second mapping is a schema level mapping that is
concerned with mapping two different properties
defined in two different RDF schemas. The mediation
mapping rule in abstract mapping language will be as
follows:

T (relationMapping (annotation (propertyid
propertyvalue) bidirectional
namespace:hasDeliverable
namespace:hasProjectOutput)

The third mapping is also an RDF schema level
mapping as it is concerned with the mapping of two
different set of classes defined in different RDF
schemas. The mediation mapping rule in Abstract
Mapping Language will be as follows:

T (classMapping (annotation (propertyid
propertyvalue) unidirectional doap:Project
:researchProject)

The above mentioned mapping rules in Abstract
Mapping Language will be serialized as set of RDF
triples, given below is the RDF representation of the
above mentioned mediation mapping rules:

<?xml version="1.0"?>

Set of triples for first mapping rule

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:project="http://www.deri.org/ns#">
 <rdf:Description
rdf:about="http://www.deri.at/projects/TSC">

<rdf:subClassOf>http://www.tuwien.ac.at/projec
ts/
 Triple_Space_Computing</rdf:subClassOf>
 </rdf:Description>

 <rdf:Description
rdf:about="http://www.tuwien.ac.at/projects/
 Triple_Space_Computing">

<rdf:subClassOf>http://www.deri.at/projects/TS
C</rdf:subClassOf>
 </rdf:Description>
</rdf:RDF>

--

Set of triples for second mapping rule

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:project="http://www.deri.org/ns#">
 <rdf:Description rdf:about="hasDeliverable">

<rdf:subClassOf>hasProjectOutput</rdf:subClass
Of>
 </rdf:Description>
 <rdf:Description
rdf:about="hasProjectOutput">

<rdf:subClassOf>hasDeliverable</rdf:subClassOf
>
 </rdf:Description>
</rdf:RDF>

--

Set of triples for third mapping rule

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:project="http://www.deri.org/ns#">
 <rdf:Description
rdf:about=":ResearchProject">

<rdf:subClassOf>doap:Project</rdf:subClassOf>
 </rdf:Description>
</rdf:RDF>

Table 5: Mappings rules represented as RDF triples

6. Conclusions and Future Work

Integration of data, information, knowledge,
processes, applications, and businesses is one of the
core problems in systems construction due to the
heterogeneity of the interacting entities. Hence,
Mediation is required in a heterogeneous environment
like the Triple Space to overcome its heterogeneity.
Mediation support in the system has been provided for
a variety of purposes, i.e. to remove differences in the
syntactic representation and the intended semantics of
data that is exchanged or to remove differences in the
way that different participants communicate with each
other. In this paper we propose data mediation support
in Triple Space Computing by providing a data
mediation engine in Triple Space Kernel to cope with
heterogeneity issue arises due to the difference in the
RDF schema and instance. Future directions of the

research work is to provide support for automated
creation of mediation mapping rules by using some
natural language processing and reasoning techniques.

Acknowledgements

The work is funded by the European Commission

under the projects ASG, DIP, enIRaF, InfraWebs,
Knowledge Web, Musing, Salero, SEKT, Seemp,
SemanticGOV, Super, SWING and TripCom; by
Science Foundation Ireland under the DERI-Lion
Grant No.SFI/02/CE1/I13 ; by the FFG
(Österreichische Forschungsförderungsgeselleschaft
mbH) under the projects Grisino, RW², SemNetMan,
SeNSE, TSC and OnTourism.

References

[1] Berners-Lee, T., et. al: The Semantic Web.
Scientific American (2001).
[2] Roman, D., Lausen, H., U.Keller, eds.: Web
Service Modelling Ontoloty (WSMO). WSMO
Deliverable, version 1.2 (2005)
[3] Martin, D., et. al: Bringing Semantics to Web
Services: The OWL-S Approach. In Proceed-ings of
the First International Workshop on Semantic Web
Services and Web Process Com-position (2004)
[4] Patil, A., Oundhakar, S., Verma, K.: METEOR-
S:Web Service Annotation Framework. In Proceedings
of World Wide Web Conference (2004)
[5] Engleberg, I., Wynn, D.: Working in groups:
Communication Principles and Strategies. Houghton
Mifflin (2003)
[6] Gelernter, D.: Mirror Worlds. Oxford University
Press (1991)
[7] TSpace, http://www.icc3.com/ec/tspace
[8] Eugster, P., et. al: The Many Faces of
Publish/Subscribe. ACM Computing Surveys (2003)
[9] Fensel, D.: Triple Space Computing. Technical
Report, Digital Enterprise Research Institute (DERI)
(2004)
[10] Bussler, C.: A Minimal Triple Space Computing
Architecture. In Proceedings of WIW 2005.
[11] Yet another RDF Store,
http://sw.deri.org/2004/06/yars/yars.html
[12] J. Domingue, D. Roman, M. Stollber, “Web
Service Modeling Ontology (WSMO) - An Ontology
for Semantic Web Services”, Position paper at the
W3C Workshop on Frame-works for Semantics in
Web Services, June 9-10, 2005, Innsbruck, Austria.
[13] R. Krummenacher, M. Hepp, A. Polleres, C.
Bussler, and D. Fensel: WWW or What Is Wrong with
Web Services. In Proc. of the 2005 IEEE European

Conf on Web Services (ECOWS 2005), Växjö,
Sweden, November 14-16, 2005.
[14] O. Shafiq, I. Toma, R. Krummenacher, T. Strang,
D. Fensel, "Using Triple-Space comput-ing for
communication and coordination in Semantic Grid”,
3rd Semantic Grid workshop at 16th Global Grid
Forum (GGF), Athens Greece, February 13-16 2006.
[15] D. Roman, U. Keller, H. Lausen, J. de-Bruijn, R.
Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler,
and D. Fensel: Web Service Modeling Ontology,
Applied Ontology, 1(1): 77 - 106, 2005.
[16] F. Scharffe, A. Kiryakov, OMWG - Mapping and
Merging Tool Design, DERI OMWG Working Draft,
October 2005. Available at
http://www.omwg.org/TR/d7/d7.2/v0.2
[17] C. Bussler et al, Web Service Execution
Environment (WSMX), W3C Member Submis-sion,
June 2005. Available at
http://www.w3.org/Submission/WSMX
[18] F. Martin-Recuerda and B. Sapkota (eds.).
WSMX Triple-Space Computing. Deliverable D21,
2005; available at: http://www.wsmo.org/TR/d21
[19] M. Murth, J. Riemer, "Security and Privacy
Models in Triple Space", a Final Working Draft of
Austrian FIT-IT funded Triple Space Computing
(TSC). Available at http://tsc.deri.at
[20] J.J. Carroll, Ch. Bizer, P. Hayes and P. Stickler:
Named Graphs, Journal of Web Semantics 3(4), 2005

