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Abstract

The advent of social tagging systems has en-
abled a new community-based view of the
Web in which objects like images, videos,
and Web pages are annotated by thousands of
users. Understanding the emergent semantics
inherent in the socially-generated collection
of annotations has important research impli-
cations for information discovery and knowl-
edge sharing. To this end, we propose a novel
probabilistic generative model for discover-
ing latent structure in large-scale social anno-
tations. The generative model identifies la-
tent community-based “categories” of interest
that can be used to group semantically-related
tags and to augment traditional content-based
information search and discovery. We vali-
date the proposed approach over large collec-
tions of Web objects annotated by the Flickr
and Delicious communities. Additionally, we
show how to integrate the annotation-based
categorical model with traditional content-
based approaches for the effective focused dis-
covery and exploration of Web objects.

1 Introduction

The emerging Social Web is noted for wide-scale
user participation in the generation, annotation, and
sharing of information. In particular, the excitement
surrounding social tagging systems – like CiteU-
Like, Delicious, Flickr, and Newsvine, among many
others – has been remarkable in the last few years,
driving a growing interest in new avenues for infor-
mation sharing and knowledge discovery

Social annotations (or tags) are typically simple
keywords or phrases that can be attached to an ob-
ject as informal user-specific metadata. For exam-
ple, on the Delicious social tagging service, a user
could tag the Web resourcewww.espn.com with
tags like “sports”, “my-favorites”, and “scores”. In
isolation, a user’s annotations can help organize a
single user’s bookmarks. But in the aggregate, the

many tags applied by thousands of (largely) inde-
pendent users can be used to uncover the collective
intelligence (i.e., emergent semantics) for support-
ing smarter tag-based browsing (Bao et al., 2007),
search (Li et al., 2007), and information access (e.g.,
through tag-based clustering (Brooks and Montanez,
2006)). Understanding and harnessing the collective
intelligence inherent in the mass collaboration of the
Social Web is a challenging and important problem.

In this paper, we study the problem of uncover-
ing latent structure in large-scale annotations. In
particular, we propose a novel probabilistic gener-
ative model that views the aggregate social annota-
tions applied to an object by a collaborative wide-
scale distributed community of taggers as the prod-
uct of a single underlying collective intelligence. By
viewing the aggregate annotations as a community-
based annotation document, the generative model
can identify latent community-based “categories” of
interest. These underlying categories of interest can
be used to understand how tags are generated, to
group semantically-related tags, to identify clusters
of related documents, and so on.

As a case study, we apply the categorical anno-
tation model to two prominent social tagging ser-
vices – Flickr and Delicious – where we identify
semantically-meaningful categories of interest. We
further explore Delicious to understand the relation-
ship between the annotations applied to a document
and the content intrinsic to the document. We find
that the proposed model identifies semantically co-
herent hidden categories that are complementary to
the topics discovered through the application of a
traditional content-based topic model. Based on this
result, we illustrate an approach for integrating the
annotation-based categorical model with content-
based approaches for Web object exploration.

2 Background and Related Work

Social annotations have received growing research
attention in the past few years. In this section, we



provide a brief overview of some related work on
(i) modeling and analyzing social annotations; and
on (ii) text-based topic modeling, which inspires the
annotation model introduced in this paper.

2.1 Analyzing social annotations

In one of the earliest studies of social tagging,
Golder and Huberman (2005) found a number of
clear structural patterns in Delicious, including the
stabilization of tags over time, even in the presence
of large and heterogeneous user communities. This
stabilization (which might be counter-intuitive, es-
pecially in contrast to the tightly controlled meta-
data produced by domain experts) suggests a shared
knowledge in tagging communities. These results
are echoed by Halpin et al. (2007), who found a
power-law distribution for Delicious tags applied to
Web pages – meaning that in the aggregate, dis-
tinct users independently described a page using a
common tagging vocabulary. Similar results can be
found elsewhere, including (Cattuto et al., 2006),
(Cattuto et al., 2007), (Li et al., 2008), and (Veres,
2006). Other work on tagging and incentives include
(Sen et al., 2006) and (Marlow et al., 2006). These
results motivate our interest in uncovering hidden
categories that could help explain these phenomena.

2.2 Topic modeling

The annotation model presented in this paper is in-
spired by related work in text-based topic model-
ing. A topic model typically views the words in
a text document as belonging to hidden (or “la-
tent”) conceptual topics. Prominent examples of la-
tent topic models include Latent Semantic Analysis
(LSA) (Deerwester et al., 1990), Probabilistic La-
tent Semantic Analysis (pLSA) (Hofmann, 1999),
and Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). Topic models are an important component of
many information retrieval and language modeling
applications. There have been a number of exten-
sions to traditional topic models including applica-
tions to hypertext (Gruber et al., 2008) and email
networks (McCallum et al., 2005).

Recently, there have been some efforts to adapt
topic models to social annotations, including (Plan-
grasopchok and Lerman, 2007; Wu et al., 2006;
Zhou et al., 2008). For example, in (Wu et al.,
2006), the authors propose a model to derive emer-

gent semantics of tags, users, and content from a
single underlying conceptual space. Similarly, in
(Zhou et al., 2008), the authors propose an anno-
tation model to unify a document’s content with the
tags applied to the document in the context of infor-
mation retrieval. Our work differs from these previ-
ous efforts in at least two aspects. First, these mod-
els are tied to the text representation of the anno-
tated document, and so cannot be easily extended
to non-textual objects like images and videos. In
contrast, we clearly distinguish the generation pro-
cess that models an object’s annotations from the
generation process that models the object itself, so
our model can be adapted to non-textual images and
videos. Second, we model the annotation process as
a collective decision that aggregates the behavior of
many users, so the community-wide consensus dic-
tates the mapping from resources to latent variables.

3 The Community-based Categorical
Annotation (CCA) Model

In this section we propose a probabilistic generative
model that aims to model the social annotation pro-
cess. By modeling the communities that engage in
social tagging and the implicit categories that each
community considers, we develop the Community-
based Categorical Annotation (CCA) Model.

3.1 Reference model

We consider a universe of discourseU consist-
ing of D socially annotated objects: U =
{O1, O2, ..., OD}. We view each socially annotated
object Oi by both its intrinsic contentCi and the
social annotationsSi attached to it by the commu-
nity of users. Hence, each object is a tupleOi =
〈Ci, Si〉 where the content and the social annota-
tions are modeled separately. We call the social
annotationsSi applied to an object itssocial an-
notation document. For example, the object corre-
sponding to a Web page annotated in the Delicious
community would consist of the HTML contents
of the Web page as well as thesocial annotation
documentgenerated by the members of the Deli-
cious community. A social annotation document can
be modeled by the set of〈user, tag, time〉 triples:
Si = {〈tagj , timek, userl〉}. In contrast to tradi-
tional Web pages and text documents that are typi-
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Figure 1: Graphical representation of the CCA Model.

cally written by a single author or a team working to-
gether, a social annotation document is “written” by
contributors that are largely unaware of each other
and the tagging decisions made by others. Ques-
tions remain – How are these social annotation doc-
uments produced? And what does this process tell
us about the collective intelligence underlying these
documents, and how can this knowledge impact in-
formation discovery and sharing?

3.2 Generating social annotations with CCA

We begin with an example. Suppose we have an im-
age of a Tyrannosaurus rex. The collaborative tag-
ging environment allows this object to be tagged by
users with various interests, expertise, and in var-
ious human languages. Hence, the social annota-
tion document associated with this image may in-
clude tags that were applied by a scientist e.g., tags
like cretaceous and theropod ), by an elemen-
tary school student (e.g., tags likemeat-eater and
t-rex ) and by a French-speaking tagger (e.g., tags
like carnivore andl ézard-tyran ).

We view the underlying groups that form around
these interests, expertise, and languages as distinct
communities. For each community, there may be
some number of underlyingcategoriesthat inform
how each community views the world. Continuing
our example, the scientist community may have un-
derlying categories centered around Astronomy, Bi-
ology, Paleontology, and so on. For each object, the
community selects tags from the appropriate under-
lying category or mixture of categories (e.g., for tag-
ging the dinosaur, the tags may be drawn from both
Biology and Paleontology).

In practice, these communities and categories are
hidden from us; all we may observe is the so-
cial annotation document that is a result of these
communities and the categories they have selected.
Inspired by recent work on LDA and other text-
based topic models (recall Section 2.2), we propose
to model the generation of tags in the social an-
notation document using a generative probabilistic
model called the Community-based Categorical An-
notation (CCA) Model.

Formally, CCA assumes a corpus ofD social an-
notation documents drawn from a vocabularyV of
tags, where each social annotation documentSi is
of variable lengthNi. The model assumes that the
tags in a social annotation document are generated
from a mixture ofL distinct communities, where
each community is a mixture of hidden categories
Kl, and where each category is a mixture of tags.
Therefore, the tagging process involves two steps:
1) the selection of a community from which to draw
tags and 2) the selection of the categories that influ-
ence the preference over tags based on the object’s
content, and the tagger’s perception/understanding
of the content. The CCA tag generation process is
illustrated in Figure 1 and described here:

1. for each communityc = 1, ..., L

• for each categoryz = 1, ...,Kc

– select Vc dimensional φz ∼
Dirichlet(γ)

2. for each objectSi, i = 1, ...,D

• SelectL dimensionalκ ∼ Dirichlet(α)

• for each communityc = 1, ..., L

– select Kc dimensional θc ∼
Dirichlet(β)

• For each tag positionSi,j, j = 1, ..., Ni

– Select a community ci,j ∼
multinomial(κi)

– Select a category zi,j ∼
multinomial(θci,j

)

– Select a tagti,j ∼ multinomial(φ
ci,j
zi,j )

A social annotation document’s community dis-
tribution κi = {κi,j}

L
j=1 is sampled from a Dirich-

let distribution with parameterα = {αi}
L
i=1. A

community’s category distributionθi = {θi,j}
K
j=1 is



sampled from a Dirichlet distribution with param-
eter β = {βi}

K
i=1. A category’s tag distribution

φz = {φz,i}
|V |
i=1 is sampled from a Dirichlet distri-

bution with parameterγ = {γi}
|V |
i=1. The genera-

tive process creates a social annotation document by
sampling for each tag positionSi,j a communityci,j

from a multinomial distribution with parameterκi,
a categoryzi,j from a multinomial distribution with
parameterθci,j

. A tag is then sampled for that posi-
tion from a multinomial distribution with parameter
φ

ci,j
zi,j .
Based on the model, we can write the likelihood

that a tag positionSi,j in a social annotation docu-
ment is assigned a specific tagt as:

p(Si,j = t|κi,Θ,Φ) =

L
∑

l=1

Kl
∑

k=1

p(Si,j = t|φl
k)p(zi,j = k|θl)p(ci,j = l|κi).

Furthermore, the likelihood of the complete social
annotation documentSi is the joint distribution of all
its variables (observed and hidden):

p(Si, zi, ci, κi,Θ,Φ|α, β, γ) =

Ni
∏

j=1

p(Si,j|φ
ci,j
zi,j )p(zi,j |θci,j

)p(ci,j |κi).

Integrating out the distributionsκi, Θ, andΦ and
summing overci andzi gives the marginal distribu-
tion of Si given the priors:

p(Si|α, β, γ) =

∫∫∫

p(κi|α)p(Θ|β)p(Φ|γ)

×

N
∏

j=1

p(Si,j|κi,Θ,Φ)dΦdΘdκi

Finally our universe of discourseU consisting of
all D social annotation documents occurs with like-
lihood:

p(U|α, β, γ) =
D
∏

i=1

p(Si|α, β, γ)

3.3 Parameter estimation and inference

The CCA model provides a generative approach
for describing how social annotation documents are
constructed. But our challenge is to work in the re-
verse direction – taking a set of social annotation

documents and inferring the underlying model (in-
cluding the hidden community and category distri-
butions). This entails learning model parametersκ,
Θ, andΦ (the distributions over communities, cate-
gories, and tags, respectively).

Although exact computation of these parameters
is intractable, several approximation methods have
been proposed in the literature for solving similar
parameter estimation problems (like in LDA), in-
cluding expectation maximization (Blei et al., 2003),
expectation propagation (Minka and Lafferty, 2003),
and Gibbs sampling (Heinrich, 2004). In this paper,
we adopt Gibbs Sampling (Heinrich, 2004) which is
a special case of Markov-chain Monte Carlo meth-
ods that estimates a posterior distribution of a high-
dimensional probability distribution. The sampler
draws from a joint distributionp(x1, x2, ..., xn) as-
suming the conditionalsp(xi|x−i) are known, where
x−i = (x1, ..., xi−1, xi+1, ..., xn).

To simplify the calculations in the rest of the pa-
per, we assume that there is a single hidden com-
munity from which the categories are drawn. For
category assignmentz and tag assignmentt of tag
positions in a corpus and given the parametersβ and
γ, Gibbs sampling computes:

p(zi|z−i, t) =
nti

zi
− 1 + γti

nzi
− 1 +

∑

t γt

.
nzi

S − 1 + βzi

nS − 1 +
∑

z βz

whereti is the tag at positioni, zi is the category,
nti

zi
is the count of positions with categoryzi and tag

ti in the corpus,nzi
is the count of of positions with

categoryzi in the corpus,nzi

S is the count of posi-
tions with categoryzi in the objectSi, andnS is the
length of the object. The first factor represents the
contribution of the tag at positioni to categoryzi in
the entire corpus while the second factor represents
the contribution of the categoryzi to the object.

Having estimated the category assignmentz, esti-
mates ofΦ andΘ are computed as follows:

φz,t =
nt

z + γt

nz +
∑

t γt

θi,z =
nz

S + βz

nS +
∑

z βz

Now for a new unseen social annotation document
S̃, the Gibbs sampler can predict its tag assignment
as follows:



φz,t̃ =
nt̃

z + nt
z + γt

nz +
∑

t γt

wherent̃
z is count of position with categoryz and tag

t in the unseen object, and its category distribution:

θS̃,z =
nz

S̃
+ βz

nS̃ +
∑

z βz

wherenz

S̃
is the count of positions with categoryz

in the unseen object.

4 Case Study: Flickr and Delicious

Given the categorical annotation model, we next
apply the model to two prominent social tagging
services – Flickr (for images) and Delicious (for
Web pages). Our goal is to identify semantically-
meaningful categories of interest in each service.

Flickr dataset: For Flickr, we began a crawl from
the tag cloud athttp://flickr.com/photos/

tags . We have identified 1,578,437 images that
have been annotated by 42,156 unique users who
have used 156,127 unique tags. For the experiments
in this paper, we considered a sample of 92,000
images that have been tagged by 44,980 unique
tags. We train the categorical annotation model with
90,000 objects and use the rest for testing.

Delicious dataset: Like Flickr, the Delicious
crawler starts with a set of popular tags. Our crawler
has discovered 607,904 unique tags, 266,585 unique
Web pages annotated by Delicious, and 1,068,198
unique users. Of the 266,585 total Web pages, we
have retrieved the full HTML for 47,852 pages. We
filter this set to keep only pages in English with a
minimum length of 20 words, leaving us with 27,572
Web pages with 16,216 unique annotations. Since
many of the pages annotated by Delicious are pri-
marily text documents, we also parsed the text of
each document for an analysis discussed in Sec-
tion 5. We use20, 000 of the objects to train our
model and the remaining7, 572 are used for testing.

4.1 Identifying the number of categories

The first challenge to discovering latent structure in
social annotations is to identify the appropriate num-
ber of hidden categories that generated the observed
data. Since the hidden categories are not directly ob-
served, we must use some unsupervised method.

Categories
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Figure 2: CCA-based category perplexity for Flickr.

We rely on a standard measure from information
theory – perplexity. Perplexity measures how well
a model predicts a test sample, and it is has been
widely used in text-based topic modeling (e.g., (Blei
et al., 2003; Zhou et al., 2008)). We measure per-
plexity on a held-out set̃D using the parameters of
an estimated modelM for a given dimension (or
category)K for the hidden variable:

Perp(D̃) = exp−

∑D̃
d=1 log P (Sd|M)
∑D̃

d=1 Nd

where

log P (Sd|M) =

V
∑

t=1

n
(t)
d log

(

K
∑

k=1

φk,tθd,k

)

andn
(t)
d is the number of times termst was observed

in documentSd and Nd is the length ofSd. The
variableφ is a model parameter while the variable
θ is computed for the held-out set. Low perplexity
values indicate a good selection of the number of
categories for the hidden variable given a corpus.

We experimented with different category dimen-
sions for both Flickr and Delicious. The perplexity
as a function of the number of categories for Flickr
is shown in Figure 2. The horizontal axes show the
number of categories and the vertical axes show the
perplexity values. Notice the decrease in perplex-
ity as the number of categories increase, as well as
the different rates of decrease. For Delicious, we
observe a similar curve, but with a “knee” at 40 cat-
egories. Based on these results, we selected 70 cate-
gories for Flickr and 40 categories for Delicious.



Table 1: Flickr: 10 of the 70 discovered categories and
the most likely tags per category (in order ofφz,t).

Cat 0: boat, sport, itali, water, torino, athlet, ship,
turin, sundai, sail, oar, rower, competit, ...

Cat 1: canada, veteran, vancouv, memori, war,
remembrancedai, dai, ontario, remembr, ...

Cat 2: portrait, face, hand, woman, photoshop,
hair, girl, color, lip, photograph, self, retrato, ...

Cat 3: build, citi, architectur, old, urban, tower,
histor, skyscrap, skylin, stone, center, librari, ...

Cat 4: water, river, blue, reflect, bridg, fish, sky,
boat, canon, artist, washington, mountain, ...

Cat 5: mountain, winter, snow, landscap, lake,
switzerland, cold, montagna, alp, trek, ...

Cat 6: art, graffiti, paint, urban, streetart, street,
tag, draw, sticker, illustr, abstract, artist, ...

Cat 7: cat, anim, love, kitten, cute, kitti, pet, gato,
felin, chat, gatto, bunni, rabbit, heart, ...

Cat 8: train, railwai, tourist, tourism, station, laura,
railroad, unitedkingdom, ride, york, locomot,...

Cat 9: food, cook, cake, restaur, chocol, dinner,
sweet, eat, minnesota, yummi, wine, bake, ...

4.2 Revealing hidden categories

Given the choice of the number of categories for
both Flickr and Delicious, what are the discovered
categories? And are they semantically coherent? In
Table 1 and 2, we report the most significant annota-
tions for a sample of 10 of the discovered categories
in each dataset ranked by probability of tag given a
categoryφz,t. We find that overall the discovered
categories appear to be semantically meaningful.

To further illustrate the revealed categories, we re-
port in Table 3 the most relevant documents per cate-
gory for 10 of the Delicious categories. We rank the
documents using the probability of a category given
a documentθi,z. We find that the quality of these
results is consistent across categories.

5 Categories vs. Content-Based Topics

Now that we have seen how the CCA model can
identify hidden categories that are used to drive the
social annotation process, we revisit the relationship
between an object’s content and its social annota-
tion document (recallOi = 〈Ci, Si〉). Previous ef-
forts have unified these two views to generate both
the content and the annotations through a single pro-

Table 2: Delicious: 10 of the 40 discovered categories
and the most likely tags per category (in order ofφz,t).

Cat 0: webdesign, design, inspir, web, resource,
templat, galleri, award, web2.0, websit, ...

Cat 1: secur, financ, monei, .net, storag, invest,
backup, asp.net, c#, busi, econom, bank, ...

Cat 2: googl, mobil, calendar, phone, sync, api,
voip, cellphon, comparison, nokia, sm, ...

Cat 3: mac, osx, appl, wiki, softwar, ipod, macosx,
app, applic, tool, ssh, wikipedia, quicksilv, ...

Cat 4: educ, math, learn, resourc, teach, kid,
technolog, mathemat, school, interact, elearn, ...

Cat 5: tutori, howto, photoshop, tip, refer, guid,
adob, articl, resourc, effect, trick, text, ...

Cat 6: photographi, photo, imag, galleri, flickr,
camera, slideshow, mindmap, stock, space, ...

Cat 7: rubi, rail, rubyonrail, host, nyc, amazon,
web, http, authent, s3, webhost, develop, ...

Cat 8: fun, humor, funni, comic, cool, geek, interest,
entertain, humour, del.icio.us, cartoon, ...

Cat 9: video, visual, anim, movi, tv, film, youtub,
motiongraph, motion, stream, media, ...

cess (e.g., (Wu et al., 2006; Zhou et al., 2008)).
The intuition is that the author of a document and
the social annotators of a document are driven by
the same motivations. Indeed, there is evidence that
many tags applied to a Web page can also be found
in the text of the page (Heymann et al., 2008). Such
a unified view, however, would seem to be mean-
ingful for annotated objects that are primarily text
(like Web pages). It is less clear how to unify the
content and annotation generation process for non-
textual objects like images and videos. Hence, we
next study whether the unified document content +
social annotation model is even reasonable for pri-
marily text-based Web pages.

5.1 Categories and topics on Delicious

For the Delicious dataset, we considered the 40 cat-
egories discovered using the CCA model. We addi-
tionally ran LDA (Blei et al., 2003) on the document
content of the collected Web pages and identified 40
latent topics (again using perplexity). We are inter-
ested to understand if the underlying topic modeling
approach for generating a document is the same as
the categorical modeling approach for generating a



Table 3: Top4 Most Relevant Documents per Category ranked byθi,z (showing 10 of the 40 categories)

Category 0 (Web design) Category 5 (Photoshop)
http://www.webbyawards.com/webbys/current.php?season=12 http://psdtuts.com/photo-effects-tutorials/applying-a-realistic-tattoo/
http://www.coolhomepages.com/ http://abduzeedo.com/creating-smoke
http://vandelaydesign.com/blog/galleries/minimal-websites-designs/ http://psdtuts.com/text-effects-tutorials/create-a-spectacular.../
http://www.designlicks.com/flash/index.php http://psdtuts.com/tutorials-effects/seriously-cool-photoshop.../

Category 1 (Banking and money) Category 6 (Photography)
https://www.fidelity.com/ http://hirise.lpl.arizona.edu/earthmoon.php
http://home.ingdirect.com/ http://www.boston.com/bigpicture/2008/05/cassininearsfour.../
http://www.chase.com/ http://wildphoto.smugmug.com/
http://www.wamu.com/personal/default.asp http://www.boston.com/bigpicture/2008/06/martianskies.html

Category 2 (Calendar syncing and messaging) Category 7 (Ruby)
http://www.gcalsync.com/ http://ec2onrails.rubyforge.org/
http://oggsync.com/ http://code.macournoyer.com/thin/
http://www.clickatell.com/pricing/messagecost.php http://www.hostingrails.com/
http://www.daveswebsite.com/software/gsync/ http://mongrel.rubyforge.org/

Category 3 (Apple/Mac) Category 8 (Fun and humor)
http://www.magnetk.com/expandrive http://www.dilbert.com/
http://macntfs-3g.blogspot.com/ http://www.achewood.com/
http://code.google.com/p/macfuse/ http://xkcd.com/162/
http://www.sccs.swarthmore.edu/users/08/mgorbach/MacFusionWeb/ http://www.sarcasmsociety.com/

Category 4 (Education) Category 9 (Video and movies)
http://school.discoveryeducation.com/schrockguide/assess.html http://www.netflix.com/MemberHome
http://www.learningpage.com/ http://www.netflix.com/
http://edhelper.com/ http://joox.net/
http://www.teach-nology.com/ http://www3.alluc.org/alluc/

social annotation document.
To measure the similarity of the content and

annotation generation processes, we compare all
pairs of topics and categories. If the two pro-
cesses are similar, we would expect to see many
similar topic/category pairs. For each possible
pair of categories and topics, we measured their
similarity using the Jensen-Shannon distance (Lin,
1991) for comparing two probability distributions
p and q over an event spaceX: JS(p, q) =
0.5 [KL(p,m) + KL(q,m)] wherem = 0.5(p+ q)
andKL(p, q) is the Kullback-leibler divergence de-
fined as:KL(p, q) =

∑

x∈X p(x) · log(p(x)/q(x)).
To compute the JS-distance between a a topic and

category we represent each topic or categoryz by
a probability vectorφz over the union of the tag
vocabulary space and the content vocabulary space.
In Figure 3 we compare all (topic,category) pairs.
The x-axis shows the categories, the y-axis shows
the topics, and the z-axis shows (1−JS-distance).
We use (1−JS-distance) for visibility where similar
pairs will show as large spikes on the plot.

While there are some clear spikes, for the major-
ity of topics there is no clear mapping to related cat-
egories, and vice versa. Hence we believe that the
categorical annotation model identifies semantically
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Figure 3: Topic vs. Category Similarity

coherent hidden categories that are not the same as
the topics discovered through the application of a
traditional content-based topic model – which fur-
ther validates the need to separately model and study
the collective intelligence annotation process from
the content-generation process.

To further understand this separation, we also ex-
amined the set of social annotation document pairs
that are categorically similar, where we considered



JS-distance in Topics
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Figure 4: Jensen-shannon distance distribution in cate-
gories: Objects with< 0.1 JS-distance in Category space

pairs with JS-divergence less than 0.1 in the cate-
gorical space. How topically similar are these doc-
uments? Do documents that share similar tags also
share similar content? In Figure 4, we report the JS-
divergence between these categorically-similar ob-
jects over theircontent-based topic similarity. Note
how many of these categorically-similar Web pages
are quite dissimilar in topic space. In other words,
objects tagged with similar tags do not necessarily
have similar content.

Conversely, we also considered the set of Web
page pairs in our Delicious dataset that had a JS-
divergence less than 0.1, where we measured the JS-
divergence over the topics associated with each doc-
ument. We find that many of these topically-similar
Web pages are quite dissimilar in categorical space.
These results echo what we saw in Figure 4, that two
documents may share many keywords in common
(i.e., are topically similar), but their view from the
community of social annotations is quite different.

5.2 Browsing in topic and category space

Finally, we briefly illustrate one way to use both the
annotation-based categorical model and the content-
based topic approach for discovery and exploration
of Web objects. The main idea is to explore objects
based both on their categorical and topical similarity
(and dissimilarity) to a candidate query object. Here,
we consider an example Web page in the Delicious
dataset concerned with the popular 1980s-era Ru-
bik’s Cube and several methods for solving the puz-
zle. The vocabulary for this page is overwhelmingly

http://www.ryanheise.com/cube/ http://www.anniston.lib.al.us/readalikes.htm

http://www.alchemistmatt.com/cube/5by5cube.htmlhttp://www.nintendo8.com/toplist/more/

http://www.chessandpoker.com/rubiks-cube-solution.htmlhttp://hca.gilead.org.il/

http://williambader.com/museum/cubes/cubes.htmlhttp://www.mcpl.lib.mo.us/readers/

http://peter.stillhq.com/jasmine/rubikscubesolution.htmlhttp://www.viceteam.org/

http://www.scaredcat.demon.co.uk/rubikscube/the_solution.htmlhttp://www.netlibrary.net/Collections.htm

http://www.ryanheise.com/cube/beginner.html http://www.forgottenbooks.org/

http://www.ryanheise.com/cube/beginner.html#third_layerhttp://www.gamelib.com.br/

http://www.rubikssolver.com/ http://www.vistaicons.com/

http://www.howtodothings.com/hobbies/how-to-solve-a-rubiks-cubehttp://www.earlyword.com/

http://thearufam.brinkster.net/cube/yy/ http://www.wyrdysm.com/games.php

http://tutorial.math.lamar.edu/

http://www.purplemath.com/modules/quadform.htm

http://edweb.tusd.k12.az.us/ibeneli/flash.html

http://www.mathgoodies.com/lessons/vol5/intro_integers.html

http://www.purplemath.com/modules/index.htm

http://davis.wpi.edu/~matt/courses/soms/

http://www.ee.ic.ac.uk/hp/staff/www/matrix/property.html

http://www.edhelper.com/math_grade1.htm

http://www.mathleague.com/help/integers/integers.htm

http://www.incompetech.com/graphpaper/

http://incompetech.com/graphpaper/

http://www.degraeve.com/reference/specialcharacters.php
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Figure 5: Browsing in Category and Topic spaces

mathematical and based solely on the content this
document is classified under the mathematics topic
with high probability. However, the document also
clearly belongs to the games and puzzles category
(and this is reflected in the tags assigned to it). Given
this query document, in Figure 5 we show the most
relevant documents to our query document based on
three views: (i) similar in topic space and similar
in category space – these documents are primarily
mathematical approaches to Rubik’s cube and simi-
lar puzzles; (ii) similar in topic space, but dissimilar
in category space – these documents are primarily
about games and puzzles; and (iii) dissimilar in topic
space, but similar in category space – these docu-
ments are primarily mathematical documents.

6 Conclusions

Understanding and modeling the collective seman-
tics centered around large-scale social annotations is
a promising research avenue with potential implica-
tions for information discovery and knowledge shar-
ing. As a step in this direction, we have presented a
new community-based categorical model for gener-
ating social annotations. Based on this model, we
showed how to discover latent structure in large-
scale social annotations collected from Delicious
and Flickr. In our continuing work, we are consider-
ing more fine-grained hierarchical models of the so-
cial annotation process and extending the integrated
browsing model introduced in Section 5.2.
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