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Abstract 
Scientific collaboration and endorsement are well-established research topics which utilize three kinds of 
methods: survey/questionnaire, bibliometrics, and complex network analysis. This paper combines topic 
modeling and path-finding algorithms to determine whether productive authors tend to collaborate with or 
cite researchers with the same or different interests, and whether highly cited authors tend to collaborate 
with or cite each other. Taking information retrieval as a test field, the results show that productive 
authors tend to directly coauthor with and closely cite colleagues sharing the same research interests; they 
do not generally collaborate directly with colleagues having different research topics, but instead directly 
or indirectly cite them; and highly cited authors do not generally coauthor with each other, but closely cite 
each other.  
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1. Introduction 
Bibliometrics measures the standing or influence of an author, journal or article in scholarly networks 
based on various citation analyses. Citations are understood to serve as carriers of authority and 
correspond to different endorsements. Scientific collaboration and endorsement are well-established 
research topics utilizing three kinds of methods (Milojevic, 2010): qualitative methods (e.g., 
surveys/questionnaires, interviews, or observations), bibliometric methods (e.g., publication counting, 
citation counting, or co-citation analysis), and complex network methods (e.g., shortest path, centralities, 
network parameters, or PageRank/HITS). These studies either provide quantitative analytical results 
about the global network features or rankings of individual network nodes, or qualitative content analysis 
of survey/observation results. But they are still not able to address the features of the scientific 
collaboration and endorsement by considering scholar’s research interests without involving labor-
intensive interviews. This derives the research question of this paper that how to apply quantitative 
methods to analyze scientific collaboration and endorsement patterns of researchers by considering their 
research interests. It will contribute to the current state of the art by analyzing scientific collaboration and 
endorsement from the research topic perspectives to see whether authors tend to collaborate with or cite 
those having the same or different research topics. Assuming that coauthorship indicates a level of 
scientific collaboration (Newman, 2004), this paper takes information retrieval (IR) as a test field and 
applies both a topic modeling algorithm and a path-finding algorithm in coauthorship and citation 
networks to address these issues.  
 
Easley and Kleinberg (2010) summarized several kinds of common networks: collaboration graphs (i.e., 
coauthorship networks), who-talks-to-whom graphs (i.e., email communication graphs), information 
linkage graphs (i.e., citation networks), and technological networks (i.e., peer-to-peer networks). Complex 
network methods provide several parameters (e.g., degree centrality, betweenness centrality, closeness 
centrality, eigenvector centrality, diameter, shortest path, distance, clustering coefficient, and geodesic) to 
characterize the features of these different networks. Most of these network parameters focus on the 
macro features of the networks by investigating the relation of a node to the rest of other nodes in the 
graph. Some ranking algorithms (e.g., PageRank, HITS) take the whole network as a graph and utilize the 
probability propagation of random surfers based on how many times a node is linked by other nodes and 
how many times a node is linked by other important nodes. Mainstream network analysis research aims to 
categorize nodes based on network connectivity properties and summarize their distribution patterns. Few 
studies consider the path between two individual nodes. In a graph, the relationship is manifested as a 
path between node A and node B with zero or a number of nodes in between, such as, a direct edge 
between node A and node B is the path with zero nodes in between. Although the shortest path has been 
applied to capture macro level network features (e.g., betweenness centrality, closeness centrality, 
distance, and geodesic), it has not been fully applied to identify relationships between two given nodes in 
a graph. Analyzing specific paths between two nodes can thus reveal micro level features of complex 
networks.  
 
Most network analyses do not consider topic features of nodes because capturing these features has been a 
challenge until the Latent Dirichlet Allocation (LDA) (Zhai & Lafferty, 2001; Blei, Ng, & Jordan, 2003). 
LDA postulates a latent structure between words and documents, which can be extended to include 
authors to enable the simultaneous modeling of document contents and author interests (Rozen-Zvi, et al, 
2004). McCallum, Wang and Corrada-Emmanuel (2007) were among the first to present the extended 



LDA model to ascertain topic distributions based on the directed messages sent between people in email 
communication networks. Their model synchronizes the content of messages and the directed social 
network within email communications, and can thus discover topics influenced by the social structure of 
people who send or receive emails. The combination of topic modeling and network analysis extends 
traditional social network analysis from categorizing network connectivity and distribution to capturing 
the content richness of social interactions.  
 
The contribution of this paper can be summarized as follows: 1) From the methodology perspective, this 
study applied the combination of a topic modeling algorithm (especially, the extended LDA model) and a 
path-finding algorithm to mine research topics of scientists based on their publications and identified their 
semantic associations based on coauthorship networks and author citation networks. The author is aware 
of no similar approach being applied in the bibliometric area; 2) From the result perspective, this paper 
was able to address the collaboration patterns and citation patterns at the topic level rather than at the 
domain/disciplinary level (Newman, 2004, Milojevic, 2010). Most citation databases (e.g. Web of 
Science) provide subject categories for papers and journals, but these categories are much broader than 
the topics mentioned in this paper. When based purely on subject categories provided by citation 
databases, it is impossible to illustrate the collaboration and citation patterns at further detailed 
granularities (Bollen, Rodriguez, & Van de Sompel, 2006), such as different research topics within one 
subject category. Based on methodologies provided in this study, collaboration and citation patterns of 
different research topic groups within one subject category are detectable; 3) This paper associated topics 
with authors, while previous studies associated subject categories with papers or journals (Bollen, 
Rodriguez, & Van de Sompel, 2006); 4) This paper identified the dynamic changes of the collaboration 
and citation patterns over more than a 40-year time span; 5) Based on the path-finding algorithm, this 
paper found that there are more than six degress of separation for the current IR coauthorship network and 
less than three degrees of influence for the current IR author citation network; and 6) This paper proposed 
the Salton number to measure the distance between any given IR researcher and Salton in the IR 
coauthorship network. 
 
This paper is organized as follows: Section 2 introduces related work categorized based on applied 
methodologies. Section 3 presents the dataset, formed networks, and methods applied in this study. 
Section 4 discusses the findings and their impact. Section 5 concludes this study and suggests future work. 

2. Related Work 
Studying scientific collaboration and citation networks has become increasingly important in order to 
better facilitate scientific collaboration and enhance scholarly communication. The related work is 
organized here based on the different approaches that these studies utilized, namely, network analysis, 
bibliometrics, and qualitative methods. 
 
Network analysis for collaboration and citation networks 

Network analysis uses mathematical models and graph theory to analyze large-scale graphs, mainly on 
the topological features, such as largest component, centrality, distance, diameter, and cluster coefficient 
(Grossman, 2002; Barabasi, 2002; Newman, 2004; and Milojevic, 2010). Collaboration graphs are scale-
free networks in which the degree distribution follows a power law. The use of shortest path to analyze 



network features is mainly based on betweenness and closeness centralities (Freeman, 1977). Goh, Oh, 
Jeong, Kahng and Kim (2002) found that the betweenness centrality distribution of the collaboration 
graph follows a power law, which indicates that most authors are sparsely connected while a few authors 
are intensively connected. Later, Goh et al. (2003) found that authors with high betweenness centralities 
do not prefer to collaborate with the same sort of authors. Newman (2004) found that scientists who work 
as a team tend to have shorter average distances to other scientists in the graph. Using Dijkstra’s 
algorithm (Ahuja, Magnanti & Orlin, 1993) to calculate the shortest distances between nodes on a 
weighted collaboration graph, he found that publishing more papers with many coauthors is a good way 
to connect with your peers. Moody (2004) laid a sociological foundation for scientific collaboration and 
proposed several models for the collaboration network. A citation network is defined as a kind of 
information network that represents the network of relatedness of subject matter (Newman, 2010). An, 
Janssen, and Milios (2004) analyzed the network feature of a citation graph in the computer science area. 
They found that the citation graph is not connected and the probability of having a directed path between 
any pair of nodes is less than 2%. Newman (2010) found that citation networks in Web of Science follow 
a power law. Citation networks can also be extended to patent citation networks (Li, Chen, Zhang & Li, 
2007) and legal citation networks (Zhang & Koppaka, 2007). Other related researches applying complex 
network methods to coauthorship and citation networks are Kretschmer (2004), Liu, Bollen, Nelson and 
Sompel (2005), Vidgen, Henneberg and Naude (2007), Rodriguez and Pepe (2008), and Yan and Ding 
(2009). These studies analyzed either the macro-level network features of coauthorship or citation 
networks, or the individual author rankings within different domains. None of them addressed the 
collaboration and citation patterns of researchers from the same or different research topic groups. This 
paper aims to fill this gap by applying the combined approach of a topic modeling algorithm and a path-
finding algorithm to find whether productive authors tend to coauthor with or cite researchers sharing the 
same research topics or those having different research topics.  
 
Bibliometric methods for collaboration and citation networks 
Citation networks have been widely studied in bibliometrics (Small, 1973; White & Griffith, 1981). These 
studies took co-citation networks as similarity graphs to unveil the disciplinary/intellectual structures of a 
domain or school of thought by using author co-citation analysis (Ding, Chowdhury & Foo, 1999), 
journal co-citation analysis (Ding, Chowdhury & Foo, 2000), and co-word analysis (Ding, Chowdhury & 
Foo, 2000a). Citation analysis focuses on counting the number of citations in different ways, which can 
be viewed as calculating the degree of nodes in various citation graphs without taking graph topology into 
consideration (e.g., impact factor (Garfield, 1972)). PageRank or HITS related studies calculated the 
eigenvector centrality of nodes (Kleinberg, 1998, Brin & Page, 1998). Bibliometrically, collaboration is 
not normally viewed or studied graphically, but rather as a social phenomenon with different factors, 
including economic factors (Price, 1966), intra-scientific factors (Beaver, 2001), scientific 
acknowledgement factors (Cronin, Shaw, & La Barre, 2003; Giles & Councill, 2004), organizational 
factors (Glanzel & Schubert, 2004), geographical factors (Ding, Foo & Chowdhury, 1998; Glanzel, 2001), 
social stratification factors (Kretschmer, 1994), sector factors (Leydesdorff & Etzkowitz, 1996), and 
academic credit factors (Katz & Martin, 1997; Cronin, 2001). These bibliometric investigations studied 
citation patterns based either on co-citation networks with the aim to detect intellectual structures of 
domains, or on PageRank to rank individual authors or journals. However, the collaboration patterns were 
not investigated utilizing research topic factors. This paper will contribute to the current state of the art by 



analyzing collaboration patterns from research topic perspectives to see whether authors tend to 
collaborate with those having the same research topics or having different research topics.    
 
Survey methods for collaboration and citation networks 
Before analysis of large-scale networks became feasible, qualitative methods were used to study social 
interactions, such as collaboration and acquaintanceship. Networks were constructed by interviewing 
participants and distributing questionnaires. Although these studies have revealed details about the 
cognitive, psychological, and sociological features of networks, they suffer from several problems (i.e., 
time-consuming, privacy concerns, subjectiveness, sampling issues, and statistical accuracy) and limit 
themselves to small-size networks (Newman, 2004a). Laudel (2002) conducted an empirical investigation 
of research collaboration based on 101 semi-structured interviews with research group leaders and 
members. She identified six types of research collaborations with distinct reward patterns and found that 
around 50% of collaborations are not rewarded in formal communication channels and only one third are 
rewarded by acknowledgements. Hara, Solomon, Kim and Sonnenwald (2003) collected collaborative 
data by using interviews with around 100 members in four multidisciplinary research groups, 
observations of videoconferences and meetings, and a center-wide sociometric survey to analyze 
scientists’ perspectives on collaboration and factors that impact collaboration. They developed a 
framework that identifies forms of collaboration (e.g., complementary and integrative collaboration) and 
associated factors (e.g., personal compatibility, work connections, incentives and infrastructure). Similar 
surveys have been conducted to investigate knowledge flows produced by patent citations (Jaffe, 
Trajtenberg & Fogarty, 2000) and to measure law reviews’ influence on judicial decisions (McClintock, 
1998). Although these survey-based researches can identify detailed features of collaboration patterns, 
none of them analyzed the topic features of collaboration patterns. Furthermore, they are costly, 
subjective, and based on a limited data size. This paper investigated the topic features of collaboration 
patterns based on large-scale collaboration and citation networks. It has also been able to identify the 
dynamic changes of these patterns based on different time spans.   

3. Methodology 
 
Data 
Information retrieval (IR) was selected as the test area. Papers and their citations were collected from 
Web of Science (WOS) covering the time period of 1956-2008. Based on a set of search terms related to 
IR, the following queries were formed: INFORMATION RETRIEVAL, INFORMATION STORAGE 
and RETRIEVAL, QUERY PROCESSING, DOCUMENT RETRIEVAL, DATA RETRIEVAL, IMAGE 
RETRIEVAL, TEXT RETRIEVAL, CONTENT BASED RETRIEVAL, CONTENT-BASED 
RETRIEVAL, DATABASE QUERY, DATABASE QUERIES, QUERY LANGUAGE, QUERY 
LANGUAGES, and RELEVANCE FEEDBACK. In total, 15,367 papers with 350,750 citations were 
gathered. Citation records contain only the first author, year, source, volume, and page number. The 
dataset was divided into four phases: 1956-1980 (Phase 1), 1981-1990 (Phase 2), 1991-2000 (Phase 3), 
and 2001-2008 (Phase 4). Table 1 shows the details of the IR dataset in these four time periods. 
 

Table 1. Overview of the IR dataset 
 1956-1980 1981-1990 1991-2000 2001-2008 Total 



No. of papers 1,313 1,173 4,485 8,396 15,367 
No. of citations 10,862 17,874 110,454 211,560 350,750 

 
 
Coauthor networks and citation networks 
Coauthorship networks document scientific collaboration through published articles, where nodes are 
authors and a link represents the fact that two authors have written at least one paper together. 
Coauthorship networks are thus undirected networks. Citation networks document the citing behavior via 
scholarly publications, where nodes are authors and a link represents the citing of one author by another. 
Citation networks are thus directed networks. The last name with first initial was used as author name in 
this study to represent unique authors (Newman, 2004, Milojevic, 2010). Table 2 shows the details of IR 
coauthorship networks and citation networks.  
 

Table 2. Overview of IR coauthorship and citation networks 
(No. of nodes, No. of edges) 1956-1980 

(Phase 1) 
1981-1990 
(Phase 2) 

1991-2000 
(Phase 3) 

2001-2008 
(Phase 4) 

Coauthorship network (930, 4256) (961, 2252) (6650, 24184) (13640, 63140) 
Citation network (6054, 11192) (5978, 17084) (36411, 171814) (62636,444203 ) 

Note: Single-authored papers are not considered in the coauthorship networks. Papers that do not contain references are not 
included in citation networks. 

 
Topic Modeling Algorithm 

This paper applied the Author-Conference-Topic (ACT) model developed by Tang, Jin and Zhang (2008). 
The ACT model is an extended LDA model used to simultaneously extract topic features of papers, 
authors, and publication venues. Conference represents a general publication venue which also includes 
journals, workshops and organizations. Figure 1 displays the plate notation of the ACT model, in which 
gray and white circles indicate observed and latent variables, respectively. An arrow indicates a 
conditional dependency between variables and plates. Plates indicate a repeated sampling with the 
number of repetitions given by the variable in the lower corner (Buntine, 1994). Here d is document, w is 
word, ܽௗ is the set of co-authors, x is author, z is topic, α, β and μ are hyperparameters, θ and Ԅ are 
multinomial distributions over topics and words, respectively, and ψ is a multinomial distribution over 
publication venues.  
 

 
Figure 1. The plate notation of the ACT model 



 
The ACT model calculates the probability of a topic given an author, the probability of a word given a 
topic, and the probability of a conference given a topic. The Gibbs sampling is used for inference, and the 
hyperparameters α, β, and μ are set at fixed values (α=50/T, β=0.01, and μ=0.1). The posterior 
distribution is estimated based on x and z only, and the results are used to infer θ, φ, and ψ. The posterior 
probability is calculated as: 
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After the Gibbs sampling, the probability of a word given a topic φ, the probability of a conference given 
a topic ψ, and the probability of a topic given an author θ can be estimated as: 
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A paper d is a vector ݓௗ of ௗܰ words, in which each ݓௗ is chosen from a vocabulary of size V. A vector 
ܽௗ of ܣௗ authors is chosen from a set of authors of size A, and ܿௗ represents a conference. A collection of 

D papers is defined by ܦ ൌ ሼሺݓଵ, ܽଵ, ܿଵሻ, … ൫ݓ,ܽ, ܿ൯ሽ, where ݔௗ  denotes an author chosen from ܽௗ 

and is responsible for the ith word ݓௗ in paper d. The number of topics is denoted as T. This paper 
applied the ACT model to extract the topical distribution of authors to derive their research interests. For 
each phase, five topics were extracted by the ACT model, and each topic contained the list of top-ranked 
authors and keywords which have high probabilities to be associated with this topic. Compared with 
tradition co-citation analysis (e.g., co-word analysis, co-author analysis, and co-journal analysis), the 
ACT model has the following advantages: 1) it can cluster author, word and journal at the same time so 
that one topic cluster contains a list of authors, a list of words, and a list of journals; 2) it can mine latent 
topics via z in Figure 1, while co-citation analysis cannot detect such hidden topics. The appendix shows 
the example of five extracted topics and their corresponding top 10 keywords and authors in 2001-2008. 
These top-ranked authors are productive authors who produce most of the words associated with this 
topic. 
 

Path‐Finding Algorithm 

Given a graph ܩ ൌ ሺܸ,  ሻ, where V represents a set of nodes and E is a set of edges linking two nodes. Eܧ
can be reincarnated into different relationships between two nodes, such as endorses/cites, knows, and 
collaborates. Edges may have different weights to illustrate importance, influence and frequency. The 
topology of the network is reflected by the asymmetric adjacency matrix ܣ ൌ ሺܣ), where ܣ ൌ 1 if ݒ 

links to ݒ and ܣ ൌ 0 if not. The Breadth-First Search (BFS) algorithm is commonly used to find the 

shortest paths between two nodes and normally takes O(n2) time, where n is the total number of edges in 
the graph (Knuth, 1997). This paper applied the path-finding algorithm developed by Jie Tang (via 



personal communication: for more details about this algorithm, please refer to He et al. (2010 submitted)). 
This algorithm can shorten the computing time to O(nlog(n)) by simultaneously applying BFS on the two 
nodes until one path has formed in the middle. It also uses other optimization processes to reduce the 
computing complexity. Additionally, it can calculate near-shortest paths and derive subgraphs of two 
given nodes in a scalable way. Figure 2 illustrates the process of finding one shortest path between node 1 
and node 26 (Figure 2-a): 

1. BFS explores the nearest neighbor of node 1 and it reaches node 3, 4, 6, 7, 10 (Figure2-b); 
2. Meanwhile, another BFS explores the nearest neighbor of node 26 similarly and reaches node 19, 21, 

23, 24, 25  (Figure 2-c); 
3. Explore all the nearest neighbors of node 3, 4, 6, 7, 10, and reach 2, 5, 8, 9, 11, 14, 18 (Figure2-d); 
4. Meanwhile, explore all the nearest neighbors of node 19, 21, 22, 23, 24, 25, and reach 15, 16, 18, 

and 22 (Figure 2-e); and 
5. Two BFS processes meet at node 18 and the algorithm ends. The shortest path between node 1 and 

node 26 is 1 – 10 – 18 – 21 – 26 (Figure 2-f). 
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Figure 2. Example of the proposed algorithm. 



4. Result and Discussion 
Figure 3 shows the general statistics of the coauthorship in IR. For the multi-authored papers, each author 
was assigned full credit. The ratio of single-authored paper decreases from 69.53% in 1956-1980 to 15.48% 
in 2001-2008. The dominant coauthorship pattern changes from single author per paper in 1956-1990 to 
two/three authors per paper in 1991-2008. The largest number of authors per paper increases from 6 to 22. 
 

Table 3. General statistics of coauthorship in IR 
 1956-1980 1981-1990 1991-2000 2001-2008 
% of Single authored papers 69.53% 62.86% 29.96% 15.48% 
% of coauthored papers (2 authors) 18.05% 20.95% 33.04% 31.00% 
% of coauthored papers (3 authors) 7.39% 9.80% 20.78% 26.41% 
% of coauthored papers (4 authors) 3.20% 3.83% 8.85% 15.05% 
% of coauthored papers (>4 authors) 1.83% 2.56% 7.38% 12.05% 

 

In each period, five topics were extracted using the ACT model. The top 20 authors with high probability 
in each topic were selected as productive authors. So a total of 100 productive authors were selected and 
paired together within and across topics. The path-finding algorithm was applied to identify the shortest 
path between any given pair in the coauthorship network of each phase. The collaboration strength is used 
to measure the length of the shortest path (i.e. also called geodesic in graph theory), where the shorter the 
length, the stronger the collaboration strength will be (Newman, 2004a). Since coauthorship networks are 
social networks, six degrees of separation (i.e., one person is only six steps away from another person, or 
there are no more than six persons in between any given two persons in the world) was applied to 
categorize the strength of collaboration (Newman, Barabási, & Duncan, 2006): direct collaboration (e.g., 
author A and author B co-authored papers directly), indirect collaboration (e.g., there are six or less nodes 
in the shortest path of author A and B), loose collaboration (e.g., there are more than six nodes in the 
shortest path of author A and B), and no collaboration (e.g., a path between author A and B does not 
exist).  
 
It is same for the citation strength. The top 100 highly cited authors were selected and paired together. 
The path-finding algorithm was applied to identify the shortest path of any given pair in the citation 
network of each phase. The citation strength is used to measure the length of the shortest path, where the 
shorter the length, the stronger citation strength will be. Since citation networks indicate the flow of 
influence in scholarly communications, three degrees of influence (where one person can be influenced 
by other person who is not more than three steps away) were applied to categorize citation strength 
(Christakis & Fowler, 2009): direct citation (e.g., author A directly cited author B), indirect citation (e.g., 
there are three or less nodes in the shortest path of author A and B), loose citation (e.g., there are more 
than three nodes in the shortest path of author A and B), and no citation (e.g., there is no path between 
author A and author B).  Here the number of nodes in the shortest path of author A and B does not include 
the starting nodes (i.e., author A) and ending nodes (i.e., author B). 
 
Productive authors’ collaboration strength within topics 
Table 4 shows the collaboration strength of the top 100 most productive authors sharing similar research 
interests which were extracted by the ACT model. In 1956-1980, 99.19% never collaborated and only 
3.51% collaborated directly (the shortest path length is 0) within the topic of Medical IR. In 1981-1990, 



there was not much change and three topics had a few direct collaborations. In contrast, things changed 
dramatically after 1990. In 1990-2000, the non-collaboration ratio dropped from 99.68% to 87.24% and 
nearly 50% of researchers collaborated with each other on the topic of Database and Query Processing. 
There were a few direct and indirect collaborations in each topic. After 2000, things changed dramatically 
again. Nearly half of the top 100 productive authors collaborated on various topics, with the topic of Data 
Storage and Evaluation being the highest (90%) and Online IR the lowest (10%). During this period, 
collaboration was more indirect (36.84%) and loose (11.05%). Overall, the collaboration strength within 
topics increased from 0.81% in 1956-1980 to 49.68% in 2001-2008. Figure 3 summarizes the overall 
collaboration strength of productive authors within topics. As each period has direct collaborations, it 
seems that productive authors tend to directly collaborate with colleagues sharing the same research 
interests. According to six degrees of separation in social networks (Newman, Barabási, & Duncan, 2006), 
Figure 3 shows that the percentage of loose collaboration within topics increased over time from 0% in 
1956-1980 to 11.05% in 2001-2008. This indicates that the current coauthorship network in IR has more 
than six degrees of separation.  
 

Table 4. Collaboration strength of productive authors within topics 

1956-1980 
Topic 1: Thesaurus 
and Chemical IR 

Topic 2: Data 
Storage and 
Evaluation 

Topic 3: 
Online IR 

Topic 4: 
Medical IR 

Topic 5: IR theory 
and Patent Average 

No Collaboration 99.47% 100% 100% 96.49% 100% 99.19% 
Direct Collaboration 
(Shortest path=0) 

0 0 0 3.51% 0 0.7% 

Indirect Collaboration 
(Shortest path<=6) 

0.53% 0 0 0 0 0.11% 

Loose Collaboration 
(Shortest path>6) 

0 0 0 0 0 0 

Longest shortest path 2 NA NA 0 NA NA 

1981-1990 
Topic 1: Automatic 
IR System 

Topic 2: Online 
IR 

Topic 3: 
Digital Library 

Topic 4: 
Database and 
Query 
Processing Topic 5: Evaluation Average 

No Collaboration 100% 99.47% 100% 99.47% 99.47% 99.68% 
Direct Collaboration 
(Shortest path=0) 

0 0.53% 0 0.53% 0.53% 0.32% 

Indirect Collaboration 
(Shortest path<=6) 

0 0 0 0 0 0 

Loose Collaboration 
(Shortest path>6) 

0 0 0 0 0 0 

Longest shortest path NA 0 NA 0 0 NA 

1991-2000 Topic 1: Web IR 
Topic 2: 
Multimedia IR 

Topic 3: 
Evaluation  

Topic 4: 
Medical IR 

Topic 5: Database and 
Query Processing Average 

No Collaboration 97.66% 91.58% 95.91% 99.47% 51.58% 87.24% 
Direct Collaboration 
(Shortest path=0) 

0.58% 1.05% 2.92% 0.53% 2.63% 1.54% 

Indirect Collaboration 
(Shortest path<=6) 

0.58% 4.21% 1.17% 0 36.32% 8.46% 

Loose Collaboration 
(Shortest path>6) 

1.17% 3.16% 0 0 9.47% 2.76% 

Longest shortest path 8 14 1 0 11 6.8 

2001-2008 
Topic 1: Thesaurus 
and Chemical IR 

Topic 2: Data 
Storage and 
Evaluation 

Topic 3: 
Online IR 

Topic 4: 
Medical IR 

Topic 5: IR theory 
and Patent Average 

No Collaboration 28.42% 10% 90% 71.05% 52.11% 50.32% 
Direct Collaboration 
(Shortest path=0) 

1.58% 1.58% 2.11% 1.05% 2.63% 1.79% 

Indirect Collaboration 
(Shortest path<=6) 

60% 54.74% 4.74% 21.05% 43.68% 36.84% 

Loose Collaboration 
(Shortest path>6) 

10% 33.68% 3.16% 6.84% 1.58% 11.05% 

Longest shortest path 9 11 7 8 7 8.4 

 

 



 
Figure 3. Summary of the collaboration strength of productive authors within topics.  

(Note: Direct collaboration: shortest path=0; indirect collaboration: shortest path<=6; loose collaboration: shortest 
path>6; and no collaboration.) 

 

Productive authors’ collaboration strength across topics 

Table 5 shows the collaboration strength of productive authors across different topics in each period, 
which is quite similar to the collaboration strength within topics. Before 1990, 99.92% never collaborated. 
In 1991-2000, people from the topic of Multimedia IR and Database and the topic of Query Processing 
started to collaborate (22.11%), while the rest did not. After 2000, nearly 50% of productive authors 
collaborated with colleagues having different topics, with the collaboration of the topic of Thesaurus and 
Chemical IR and the topic of Data Storage and Evaluation being the highest (80.75%), and the topic of 
Online IR and the topic of Medical IR the lowest (16.5%). Loose collaboration was up to 13.83% with the 
longest shortest path reaching 12. Overall, the collaboration strength across topics increased from 0.08% 
in 1956-1980 to 43.6% in 2001-2008. Figure 4 summarizes the collaboration strength of productive 
authors across topics. In general, direct collaboration remains consistently rare during these four periods. 
It seems that productive authors do not generally collaborate directly with colleagues having different 
research topics, and instead collaborate indirectly via other shared collaborators. Figure 4 shows that the 
percentage of loose collaboration across topics increased from 0% in 1956-1980 to 13.83% in 2001-2008. 
As seen in the collaboration within topics, this confirms that the current coauthorship network in IR has 
more than six degrees of separation. 
 

Table 5. Collaboration strength of productive authors across topics 
1956-1980 T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5 Average 
No Collaboration 100% 100% 100% 100% 99.47% 100% 99.72% 100% 100% 100% 99.92% 
Direct Collaboration 
(Shortest path=0) 

0 0 0 0 0 0 0 0 0 0 0 

Indirect 
Collaboration 
(Shortest path<=6) 

0 0 0 0 0.53% 0 0.28% 0 0 0 0.08% 

Loose Collaboration 
(Shortest path>6) 

0 0 0 0 0 0 0 0 0 0 0 

Longest shortest 
path 

NA NA NA NA 1 NA 1 NA NA NA NA 

1981-1990 T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5 Average 
No Collaboration 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.25% 99.93% 

1956‐1980 1981‐1990 1991‐2000 2001‐2008

Direct Collaboration 0.70% 0.32% 1.54% 1.79%

Indirect Collaboration 0.11% 0 8.46% 36.84%

Loose Collaboration 0 0 2.76% 11.05%

No Collaboration 99.19% 99.68% 87.24% 50.32%
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Direct Collaboration 
(Shortest path=0) 

0 0 0 0 0 0 0 0 0 0.5% 0.05% 

Indirect 
Collaboration 
(Shortest path<=6) 

0 0 0 0 0 0 0 0 0 0.25% 0.03% 

Loose Collaboration 
(Shortest path>6) 

0 0 0 0 0 0 0 0 0 0 0 

Longest shortest 
path 

NA NA NA NA NA NA NA NA NA 1 NA 

1991-2000 T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5 Average 
No Collaboration 95% 97.78% 100% 88.95% 98.95% 100% 77.89% 99.75% 100% 100% 95.83% 
Direct Collaboration 
(Shortest path=0) 

0 0 0 0 0 0 0 0 0 0 0 

Indirect 
Collaboration 
(Shortest path<=6) 

3.16% 2.22% 0 3.95% 1.05% 0 9.47% 0.25% 0 0 2.01% 

Loose Collaboration 
(Shortest path>6) 

1.84% 0 0 7.11% 0 0 12.63% 0 0 0 2.16% 

Longest shortest 
path 

13 3 NA 11 4 NA 15 1 NA NA NA 

2001-2008 T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5 Average 
No Collaboration 19.25% 74.5% 53.25% 40.5% 71.5% 47.75% 33.5% 83.5% 79% 61.25% 56.40% 
Direct Collaboration 
(Shortest path=0) 

0 0.25% 0 0.25% 0 0 0.5% 0 0 0.25% 0.13% 

Indirect 
Collaboration 
(Shortest path<=6) 

51.5% 17.5% 35.25% 43.75% 15.75% 30.75% 41.25% 13% 17% 30.75% 29.65% 

Loose Collaboration 
(Shortest path>6) 

29.25% 7.75% 11.5% 15.5% 12.75% 21.5% 24.75% 3.5% 4% 7.75% 13.83% 

Longest shortest 
path 

12 10 10 10 11 12 10 9 8 8 10 

Note: Here T1-T4 corresponds to the Topic 1-Topi 4 in Table 4. 

 

Figure 4. Summary of the collaboration strength of productive authors across topics 
 

Productive authors’ citation strength within topics 

Table 6 shows the citation strength of productive authors within topics, which is different compared with 
their corresponding collaboration strengths. In 1956-1980, 57.52% of authors sharing the topic of Data 
Storage and Evaluation cited each other and their citation strength spans from direct citation (8.5%) to 
loose citation (9.83%). In 1980-1991, 84.74% of authors in the topic of Evaluation cited each other 
directly (13.16%) and indirectly (57.37%). In 1991-2000, 56.53% of authors cited each other within 
topics, and 86.84% of authors from the topic of Database and Query Processing cited each other directly 
and indirectly. After 2000, 85.05% of productive authors cited each other within topics, with direct and 

1956‐1980 1981‐1990 1991‐2000 2001‐2008

Direct Collaboration 0 0.05% 0 0.13%

Indirect Collaboration 0.08% 0.03% 2.01% 29.65%

Loose Collaboration 0 0 2.16% 13.83%

No Collaboration 99.92% 99.93% 95.83% 56.40%
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indirect citations dominating. During these four phases, these researchers continued to cite each other, and 
the citation strength increased from 19.01% in 1956-1980 to 85.05% in 2001-2008, the majority being 
either direct or indirect citations. It seems that productive authors like to directly/indirectly cite authors 
with the same research interests. Figure 5 summarizes the citation strength of productive authors within 
topics. The citation graphs demonstrate the influence and knowledge transfer in scholarly communication. 
According to the three degrees of influence (Christakis & Fowler, 2009), the percentage of loose citation 
within topics increased slightly from 3.10% in 1956-1980 to 9.79% in 2001-2008. 
 

Table 6. Citation strength of productive authors within topics 

1956-1980 
Topic 1: Thesaurus 
and Chemical IR 

Topic 2: Data 
Storage and 
Evaluation 

Topic 3: 
Online IR 

Topic 4: 
Medical IR 

Topic 5: IR theory 
and Patent Average 

No Citation 97.37% 42.48% 75.79% 98.83% 90.06% 80.91% 
Direct Citation 
(Shortest path=0) 

2.63% 8.5% 3.68% 0.58% 1.17% 3.31% 

Indirect Citation 
(Shortest path<=3) 

0 39.22% 18.95% 0 5.26% 12.69% 

Loose Citation 
(Shortest path>3) 

0 9.83% 1.58% 0.58% 3.51% 3.1% 

Longest shortest path 0 6 5 6 7 4.8 

1981-1990 
Topic 1: Automatic 
IR system 

Topic 2: Online 
IR 

Topic 3: 
Digital Library 

Topic 4: 
Database and 
Query 
Processing Topic 5: Evaluation Average 

No Citation 99.47% 72.63% 88.30% 75.79% 15.26% 70.29% 
Direct Citation 
(Shortest path=0) 

0 2.63% 0 3.68% 13.16% 3.89% 

Indirect Citation 
(Shortest path<=3) 

0.53% 22.63% 5.85% 16.32% 57.37% 20.54% 

Loose Citation 
(Shortest path>3) 

0 2.11% 5.85% 4.21% 14.21% 5.28% 

Longest shortest path 1 6 8 7 7 5.8 

1991-2000 Topic 1: Web IR 
Topic 2: 
Multimedia IR 

Topic 3: 
Evaluation  

Topic 4: 
Medical IR 

Topic 5: Database and 
Query Processing Average 

No Citation 63.74% 35.79% 25.73% 78.95% 13.16% 43.47% 
Direct Citation 
(Shortest path=0) 

3.51% 7.37% 12.87% 0 12.63% 7.28% 

Indirect Citation 
(Shortest path<=3) 

23.98% 48.42% 60.24% 5.79% 71.05% 41.9% 

Loose Citation 
(Shortest path>3) 

8.77% 8.42% 1.17% 15.26% 3.16% 7.36% 

Longest shortest path 6 6 4 6 4 5.2 

2001-2008 
Topic 1: Thesaurus 
and Chemical IR 

Topic 2: Data 
Storage and 
Evaluation 

Topic 3: 
Online IR 

Topic 4: 
Medical IR 

Topic 5: IR theory 
and Patent Average 

No Citation 4.74% 11.58% 20.53% 18.42% 19.47% 14.95% 
Direct Citation 
(Shortest path=0) 

5.26% 6.84% 7.37% 15.26% 12.63% 9.47% 

Indirect Citation 
(Shortest path<=3) 

89.47% 72.11% 51.58% 65.79% 67.89% 69.37% 

Loose Citation 
(Shortest path>3) 

0.53% 9.47% 20.53% 0.53% 17.89% 9.79% 

Longest shortest path 4 4 6 4 3 4.2 

 



 
Figure 5. Summary of the citation strength of productive authors within topics 

 
Note: Direct Citation: shortest path=0, Indirect Citation: shortest path<=3, Loose Citation: shortest path>3, and No Citation. 

 

Productive authors’ citation strength across topics 

Table 7 shows the citation strength of productive authors across topics. During the first two periods, 24% 
of productive authors cited colleagues with different interests and citation strength spread evenly from 
direct, indirect, to loose citation. The average length of longest shortest paths was 8. In 1991-2000, 59.11% 
of authors cited each other directly (1.2%), indirectly (49.39%), and loosely (8.51%). In 2001-2008, the 
majority of them (86.65%) cited each other, with indirect citation being the highest (81.15%). Figure 6 
summarizes the citation strength of productive authors across topics. According to the three degrees of 
influence, the percentage of loose citation across topics decreased from 18.35% in 1956-1980 to 4.05% in 
2001-2008. This indicates that the current citation network in IR has fewer than three degrees of influence. 
 

Table 7. Citation strength of productive authors across topics 
1956-1980 T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5 Average 
No Citation 33.61% 60.5% 68.68% 73.16% 70% 77.89% 78.95% 81.58% 82.46% 98.06% 72.49% 
Direct Citation 
(Shortest path=0) 

1.67% 0.5% 0.79% 0 0.83% 0.26% 2.92% 0.53% 2.34% 0 0.98% 

Indirect Citation 
(Shortest path<=3) 

33.89% 16.25% 5.79% 15.79% 23.61% 4.74% 12.57% 6.05% 11.7% 1.39% 13.18% 

Loose Citation 
(Shortest path>3) 

30.83% 22.75% 24.74% 11.05% 5.56% 17.11% 55.56% 11.84% 3.51% 0.55% 18.35% 

Longest shortest 
path 

8 7 9 11 6 9 11 7 9 5 8.2 

1981-1990 T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5 Average 
No Citation 92% 96.05% 94.75% 87.25% 85.53% 80.75% 53.25% 83.42% 59.74% 32% 76.47% 
Direct Citation 
(Shortest path=0) 

0 0 0 0.5% 0.53% 0.25% 4.25% 0.26% 0.79% 1.75% 0.83% 

Indirect Citation 
(Shortest path<=3) 

4.25% 1.58% 1.75% 8% 8.68% 14.25% 35.75% 7.11% 27.11% 30.5% 13.90% 

Loose Citation 
(Shortest path>3) 

3.75% 2.37% 3.5% 4.25% 5.26% 4.75% 6.75% 9.21% 12.37% 35.75% 8.80% 

Longest shortest 
path 

8 10 6 9 8 5 7 7 8 11 7.9 

1991-2000 T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5 Average 
No Citation 36.84% 29.09% 74.74% 24.21% 24.21% 73% 19% 71.58% 14.74% 41.5% 40.89% 
Direct Citation 2.37% 4.43% 0.53% 1.05% 1.32% 0 0.75% 0.53% 1.05% 0 1.2% 

1956‐1980 1981‐1990 1991‐2000 2001‐2008

Direct Citation 3.31% 3.89% 7.28% 9.47%

Indirect Citation 12.69% 20.54% 41.90% 69.37%

Loose Citation 3.10% 5.28% 7.36% 9.79%

No Citation 80.91% 70.29% 43.47% 14.95%
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(Shortest path=0) 
Indirect Citation 
(Shortest path<=3) 

50.53% 65.93% 16.32% 68.95% 74.21% 16.75% 75.5% 20% 69.74% 36% 49.39% 

Loose Citation 
(Shortest path>3) 

10.26% 0.55% 8.42% 5.79% 0.26% 10.25% 4.75% 7.89% 14.47% 22.5% 8.51% 

Longest shortest 
path 

7 4 5 4 4 5 4 5 5 6 6 

2001-2008 T1-T2 T1-T3 T1-T4 T1-T5 T2-T3 T2-T4 T2-T5 T3-T4 T3-T5 T4-T5 Average 
No Citation 10% 20% 10% 10% 20% 10% 10% 14.5% 14.5% 14.5% 13.35% 
Direct Citation 
(Shortest path=0) 

0 0.25% 2% 2.5% 0 0.25% 2.5% 1% 0.75% 5.25% 1.45% 

Indirect Citation 
(Shortest path<=3) 

82.75% 77.25% 87.5% 87.5% 75% 86.5% 87.5% 71.5% 75.75% 80.25% 81.15% 

Loose Citation 
(Shortest path>3) 

7.25% 2.5% 0.5% 0 5% 3.25% 0 13% 9% 0 4.05% 

Longest shortest 
path 

5 4 4 3 4 4 3 6 6 3 4.2 

 

 

 

Figure 6. Summary of the citation strength of productive authors across topics 
 

5. Highly cited authors 
In each phase, the top 100 highly cited authors were selected and paired together, and the path-finding 
algorithm was used to calculate their collaboration and citation strengths. Since the ACT model cannot 
extract the topical distribution for cited authors, it is not possible to calculate the collaboration and 
citation strength of highly cited authors within or across topics. 
 

Highly cited authors’ collaboration strength 

Table 8 shows the collaboration strength of highly cited authors. The majority did not coauthor before 
2000. After 2000, however, 48.48% started to write papers together in indirect ways. Direct collaboration 
was only 0.38%, and 29.11% of collaborations have three or less colleagues in the shortest paths. The 
longest shortest path was 15, which means that author A and author B were connected via 15 different 
authors. Figure 7 summarizes the collaboration strength of highly cited authors. The collaboration 
percentage increased from 0.37% in 1956-1980 to 48.48% in 2001-2008. As Moody (2004, p217) pointed 
out, funding requirements, the rise of large-scale data collection and analysis efforts, the subtle division 

1956‐1980 1981‐1990 1991‐2000 2001‐2008

Direct Citation 0.98% 0.83% 1.20% 1.45%

Indirect Citation 13.18% 13.90% 49.39% 81.15%

Loose Citation 18.35% 8.80% 8.51% 4.05%

No Citation 72.49% 76.47% 40.89% 13.35%
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between specialty and training, and scientific laboring distribution explain the increase in coauthorship 
over time. The collaboration strength of highly cited authors further confirmed that the current 
coauthorship network in IR has more than six degrees of separation. 
 

Table 8. Collaboration strength of highly cited authors 
 1956-1980 1981-1990 1991-2000 2001-2008 
No Collaboration 99.63% 98.92% 86.38% 51.52% 
Direct Collaboration (Shortest path=0) 0.22% 0.83% 0.55% 0.38% 
Indirect Collaboration (Shortest path<=6) 1.44% 0.25% 5.02% 29.11% 
Loose Collaboration (Shortest path>6) 0 0 8.05% 18.99% 
Longest shortest path 1 2 19 15 

 

 

Figure 7. Summary of the collaboration strength of highly cited authors 
 

Highly cited authors’ citation strength 

Table 9 shows the citation strength of highly cited authors in different phases. In 1956-1980, less than 40% 
cited each other. After that, 72.64% cited each other directly (6.6%), indirectly (61.93%), and loosely 
(3.91%). Figure 8 summarizes the citation strength of highly cited authors. It seems that highly cited 
authors cited each other more directly. They did not tend to coauthor with each other and their 
collaboration strength was very loose. The citation strength of highly cited authors further confirms that 
the current citation network in IR has less than three degrees of influence. 
 

Table 9. Citation strength of highly cited authors 
 1956-1980 1981-1990 1991-2000 2001-2008 
No Citation 63.55% 40.92% 17.95% 23.81% 
Direct Citation (Shortest path=0) 3.76% 4.15% 7.84% 7.81% 
Indirect Citation (Shortest path<=3) 25.28% 43.49% 74.15% 68.16% 
Loose Citation (Shortest path>3) 7.42% 11.44% 0.06% 0.22% 
Longest shortest path 12 10 4 4 
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Direct Collaboration 0.22% 0.83% 0.55% 0.38%

Indirect Collaboration 1.44% 0.25% 5.02% 29.11%

Loose Collaboration 0 0 8.05% 18.99%

No Collaboration 99.63% 98.92% 86.38% 51.52%
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Figure 8. Summary of the citation strength of highly cited authors 
 

 

6. Salton Number 
Following the idea of the Erdős number in mathematics (http://www.oakland.edu/enp/) and the Bacon 
number for celebrities (http://oracleofbacon.org/), this paper proposed the Salton number for the IR 
community, which is the geodesic distance between one IR researcher and Salton in the IR coauthorship 
network. Salton was the leading researcher in IR and played an important role in establishing and 
developing the IR field. In his life time, he published more than 150 papers and co-authored with a wide 
range of colleagues, students and other collaborators. In mathematics, the average Erdős number is 4.7 
and the maximum is 15 (Grossman, 2002). In this section, a coauthorship network was formed based on 
the whole IR dataset covering the period from 1956 to 2008. The top 100 highly cited authors in 1956-
2008 were selected to calculate their Salton number. Among them, 14.13% had never coauthored with 
Salton (e.g., D. R. Swanson, T. Kohonen, S. P. Harter); 5.43% of them had directly coauthored with 
Salton (e.g., C. T. Yu, E. A. Fox, C. Buckley); 76.09% had indirect collaboration with Salton (e.g., N. J. 
Belkin [1], W. B. Croft [1], K.S. Jones [1]); and 4.35% had loose collaboration (e.g., F. W. Lancaster [6], 
M. Stonebraker [7], T. Imielinski [8]). Numbers in brackets show the Salton number which is the number 
of nodes in the shortest path without counting the starting and ending nodes. The average Salton number 
is 4.64, which is close to the Erdős number in mathematics, and the largest number is 8. Figure 9 shows 
some shortest paths between Salton and C. L. Borgman. 
 

1956‐1980 1981‐1990 1991‐2000 2001‐2008

Direct Citation 3.76% 4.15% 7.84% 7.81%

Indirect Citation 25.28% 43.49% 74.15% 68.16%

Loose Citation 7.42% 11.44% 0.06% 0.22%

No Citation 63.55% 40.92% 17.95% 23.18%
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Figure 9. The shortest paths between Salton and C. L. Borgman  

7. Conclusion 
Bibliometrically, analyzing the relationship between two specific nodes is ignored, as ranking individual 
nodes dominates state-of-the-art research. But identifying the relationship between two specific nodes can 
reveal scholarly communication patterns (i.e., collaboration, knowledge diffusion, or authority transfer) 
with finer granularity. Topic modeling algorithms (e.g., LDA) can calculate the topical similarity between 
two nodes, but they cannot capture their relationship at a path level for a graph. A majority of current 
complex network analyses focus on identifying network connectivity and their distribution patterns (e.g., 
a power law, preferential attachment, scale-free network, or small-world network). They usually focus on 
the macro-level features of complex networks and do not drill down to the micro-level features of 
individual nodes or their paths/connected subgraphs (Faloutsos, McCurley, & Tomkins, 2004). This paper 
combined the method of topic modeling and network analysis to address the micro-level features of 
scientific collaboration and endorsement.  
 
Information retrieval was taken as the test area, and the top 100 productive authors and highly cited 
authors were selected and their collaboration and citation strengths were investigated. The Salton number 
was introduced and the average Salton number is 4.64. The combination of LDA and path-finding 
algorithms enables us to address the following questions: 

 Will productive authors collaborate with/cite people sharing same research interests?  For the 
collaboration part, we found that before 1990, productive authors seldom collaborated with 
colleagues who have the same research interests. After 1990, their collaboration strengths 
increased from 12.76% to 49.68%. Productive authors tend to directly coauthor with colleagues 
sharing the same research interests, which is viewed as homophily in social networks (McPherson, 
Smith-Lovin and Cook, 2001). For the citation part, we found that productive authors consistently 
cite/endorse colleagues with the same research interests and their citation strengths increase from 
19.09% to 85.05%, the majority of which are either direct or indirect citation. It seems that 
productive authors tend to directly/indirectly cite authors with the same research interests; 

 Will productive authors with different research interests collaborate with/cite each other? For the 
collaboration part, we found that few productive authors collaborated with colleagues having 
different research interests before 2000. After 2000, nearly 50% of them collaborated but in an 



indirect or loose manner. It seems that productive authors did not collaborate directly with 
colleagues having different research topics, but rather indirectly via other shared collaborators. 
For the citation part, we found that productive authors often cited colleagues with different 
research interests and their citation strengths increased from 27.51% to 86.65%. The majority of 
citations belong to the category of indirect citation. As found in the citation strength of productive 
authors within topics, these authors tend to closely cite colleagues from different research fields; 

 Will highly cited authors collaborate with/cite each other? We found that the majority of highly 
cited authors did not collaborate with each other until 2000. After that, 48.48% of them started to 
coauthor with each other indirectly, while they repeatedly cited each other through these years in 
a direct and indirect manner; and 

 Do scholarly networks in IR follow six degrees of separation or three degrees of influence? We 
found that the current coauthorship network in IR has more than six degrees of separation and the 
current citation network in IR has less than three degrees of influence. In other words, the IR 
researchers’ collaboration strength is going beyond six persons in their shortest paths and they 
cite colleagues with no more than three persons away. 

 
Citing behavior implies endorsement, confers authority, and traces provenance. It provides a unique way 
of allowing the network to play a role in determining researcher standing, impact and influence 
(Kleinberg, 1998).  Citation is taken as a carrier of authority and weighted citations correspond to the 
strength of different endorsements. The path between two articles built through the citing activities 
portrays the provenance of authority transfer flow, which can be interpreted as scholarly trust. However, 
one can trust people with a limited or greater level of responsibility. The same goes for knowledge, 
influence, and impact transfer on scholarly networks. Setting up a notion of authority with different 
contexts is essential. So the influence flow from nodes to nodes within a scholarly network should be 
differentiated across different authorities, rather than merely considering every node equally or 
indiscriminately. In the future, we would like to utilize the topic modeling and path-finding algorithm to 
trace scholarly provenance and to establish scholarly trust. 
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Appendix 
Topic and Author ranks in 2001-2008 

Topic 1: Multimedia IR 
Topic 2: Database and 
Query Processing  Topic 3: Medical IR 

Topic 4: Web IR and Digital 
library  Topic 5: IR Theory and Model 

WORD  PROB  WORD  PROB WORD PROB WORD PROB  WORD  PROB

image  0.063250  query  0.033203 database 0.010424 web 0.023822  document 0.014450

content‐based  0.017681  data  0.025732 medical 0.007140 search 0.015858  text  0.010966

learning  0.008809  xml  0.019248 health 0.004982 digital 0.008366  query  0.009878

images  0.008667  processing  0.018614 clinical 0.004513 searching 0.006395  image  0.009587

relevance  0.008383  queries  0.016147  management  0.004325  knowledge  0.006001  relevance  0.008499 

color  0.008312  databases  0.012764 search 0.004138 system 0.005764  fuzzy  0.008281

feedback  0.008312  database  0.009733 design 0.004138 query 0.005764  web  0.007991

video  0.007673  efficient  0.009451 study 0.003668 user 0.005528  model  0.006539

semantic  0.007389  web  0.009381 support 0.003575 model 0.005212  system  0.006321

similarity  0.007318  querying  0.008958 knowledge 0.003575 internet 0.004424  cross‐language 0.006176

AUTHOR  PROB  AUTHOR  PROB  AUTHOR  PROB  AUTHOR  PROB  AUTHOR  PROB 

HUANG TS  0.000572  LI JZ  0.000572 KOSTOFF RN 0.000321 THELWALL M 0.000628  CRESTANI F 0.000573

ZHANG HJ  0.000528  BRY F  0.000415 BALIS UJ 0.000283 YANG CC 0.000545  JONES GJF 0.000554

LU GJ  0.000409  KIM HJ  0.000371 
EYSENBACH 
G  0.000257  SPINK A   0.000457 

HERRERA‐
WIEDMA E  0.000548 

LI J  0.000365  PAPADIAS D  0.000364 HAYNES RB 0.000251 JACSO P 0.000444  SAVOY J 0.000510

CHANG CC  0.000358  SUBIETA K  0.000358 NILSSON G 0.000238 FOURIE I 0.000425  LALMAS M 0.000510

IZQUIERDO E  0.000352 
VAN DEN 
BUSSCHE J  0.000339  SHATKAY H  0.000218  CHEN HC  0.000393  JARVELIN K  0.000510 

LASSKSONEN J  0.000327  TANIAR D  0.000327 
WILCZYNSKI 
NL  0.000218  FORD N  0.000381  KANDO N  0.000466 

BURKHARDT H  0.000308  GEERTS F  0.000327  SHYU CR 0.000218 XIE H 0.000368  CHEN SM  0.000403 

LIU CJ  0.000308  SONG M  0.000320 
WESTBROOK 
JI 

0.000218 CHOWDHURY 
GG 

0.000355  FUHR N 0.000397

ZIOU D  0.000302  CHUNG YD  0.000320 BABNETT GO 0.000212 HJORLAND B 0.000349  OUNIS I 0.000378

 


