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Abstract 
This study discusses the effects of dangling nodes on citation networks through the PageRank algorithm. The 
origins of dangling nodes for citation networks are introduced and three methods are applied to handle dangling 
nodes: retaining all dangling nodes, deleting dangling nodes, and clustering dangling nodes into one node. 
Correlation analyses are used to compare these three methods.  

Introduction 
In the language of network analysis, dangling nodes denote the nodes without outgoing links. 
With the advent of the Web, the concept of dangling nodes became a common topic. It is well 
understood that most web pages link to and are linked by other pages. But it is possible that 
some pages do not contain any valid hyperlinks, which may be broken pages (i.e., those that 
formerly contained hyperlinks but have now become “403/404 Error”) or multimedia data 
types (i.e., PDF, JPG, PS, MOV). The problem of dangling nodes has become more evident 
with the proliferation of search engines. Search engines are reported to have low coverage of 
the entire Web (Lawrence & Giles, 1999; Bar-Ilan, 2002; Vaughan & Thelwall, 2004). 
Consequently, if a page’s linked pages are not crawled by search engines, it would become a 
dangling node. 
For citation networks, each node is a publication and each link is a citation tie. Dangling nodes 
represent publications cited by other publications, but do not cite others. Citing behaviors 
affect the generation of dangling nodes in citation networks, as papers can only cite papers 
published earlier. Disciplinarity and databases coverage can also result in dangling nodes in 
citation networks.  
PageRank is chosen as the underlying algorithm to measure the impacts of dangling nodes on 
citation networks. PageRank is not new to citation analysis. More than 30 years ago, Pinski and 
Narin (1976) proposed the concept of “influence weights”, which served as the archetype for 
PageRank. For citation networks, PageRank algorithm gives higher weight to highly cited 
articles or articles cited by other highly cited articles.  
Previous studies on the Web manipulated dangling nodes for two major reasons. First, dangling 
nodes exits in large scale and thus it is computational intensive to calculate PageRank for large 
network. Second, dangling nodes receive PageRank scores but did not distribute them and thus 
skewed the scores of non-dangling nodes. In the past decade, several methods have been 
proposed to handle the negative effect of dangling nodes on the Web. Citation networks, 
however, usually are comparatively small in size (from thousands to millions), and required 
computing time and space is therefore less demanding. Specifically, using power method, the 
cost of computing PageRank is O(n), and thus it is possible to store the citation matrix using a 
linear amount of memory and the vector-matrix multiplication has linear complexity 
(Franceschet, 2010). Based on this, dangling nodes on citation network need to be manipulated 
only if they negatively affect PageRank scores of non-dangling nodes. The null and research 
hypotheses are proposed as follows. 

• H0

• H
: dangling nodes do not affect PageRank scores of non-dangling nodes on citation networks; 

1: dangling nodes have effects on PageRank scores of non-dangling nodes on citation 
networks. 
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Two methods (deleting and lumping) are used to manipulate dangling nodes, and test the 
hypotheses through comparing the PageRank scores of non-dangling nodes on the manipulated 
network and original network. 
The article is organized as follows: Section 2 conducts a literature review of relevant methods 
used to handle dangling nodes; Section 3 introduces the data set and methods; Section 4 applies 
PageRank algorithm to the data set and discusses the effects of dangling nodes on citation 
networks; and Section 5 draws the conclusion. 

Related studies 
In the original PageRank paper, Page et al. (1999) suggested removing dangling nodes from the 
graph, and calculating the PageRank on the remaining graph. Kamvar et al. (2003) suggested 
removing the dangling nodes and then re-inserting them “for the last iterations”. This approach 
was also suggested by Brin et al. (1998). Eiron, McCurley, and Tomlin (2004), however, 
discussed the caveats of removing dangling nodes, which skews the results on the non-dangling 
nodes, since the outdegrees of non-dangling nodes are adjusted when dangling nodes are 
deleted. They also argued that the process of removing dangling nodes may itself produce new 
dangling nodes. Langville and Meyer (2006) also held that simply removing the dangling 
nodes biases the PageRank vector. 
Another approach proposed by Lee, Golub, and Zenios (2003) clustered dangling nodes into 
one node. The algorithm they proposed exploits the “lumpability” of the Markov chain and 
proceeds in two stages. At the first stage, they computed the limiting distribution of a chain 
where the dangling nodes are combined into one super node; at the second stage, they 
computed the limiting distribution of a chain where only the non-dangling nodes are combined. 
Ipsen and Selee (2007) took the same approach, where all dangling nodes are lumped into a 
single node. They also showed that the PageRank of the non-dangling nodes can be computed 
separately, with the convergence rate as that of the power method applied to the full matrix. 
Other related methods include Eiron, McCurley, and Tomlin’s (2004) notion of penalty pages. 
They proposed four methods to “penalize” the pages linking to dangling pages by reducing 
their PageRank scores.  
For paper citation networks, Chen, Xie, Maslov, and Render (2007) applied PageRank to 
assess the relative importance of publications in the Physical Review family. They found that 
PageRank values and citations for each publication are positively correlated. Ma, Guan, and 
Zhao (2008) applied PageRank in evaluating research influence of countries in the fields of 
Biochemistry and Molecular Biology. They found that citation and PageRank are highly 
correlated, with correlation coefficient reaching to 0.9 at the 0.01 level. Another advance that 
utilizes the concept of PageRank is the SCImago Journal and Country Rank (SCImago, 2007). 
These studies applied PageRank to citation networks but did not consider the effects of 
dangling nodes. For this study, three methods are applied to handle the dangling nodes in 
citation networks: (1) keeping all dangling nodes; (2) deleting dangling nodes; and (3) 
clustering dangling nodes into one node. 

Methodology 

Data set 
The field of informetrics is chosen, query recommended by Bar-Ilan (2008) is utilized and 
improved to search all relevant records in Web of Science (retrieval time: Jan 31st, 2009; time 
span: default all years): TS=(informetric* OR bibliometric* OR webometric* OR 
scientometric* OR citation analy* OR cocitation analy* OR co-citation analy* OR link analy* 
OR hyperlink analy* OR self citation* OR self-citation* OR impact factor* OR science polic* 
OR research polic* OR S&T indicator* OR citation map* OR citation visuali* OR information 
visual* OR h-index OR h index OR Hirsch index OR patent analy* OR Zipf OR Bradford OR 
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Lotka OR collaboration network* OR coauthorship network* OR co-authorship network*) OR 
SO=(Scientometrics OR Journal of Informetrics). Subject category INFORMATION 
SCIENCE & LIBRARY SCIENCE was used to narrow down the search results. The original 
data set covers 4,997 papers1

Dangling nodes in citation networks 

 (articles and review articles) with 92,021 cited references.  

When constructing a citation network, relevant bibliographical data of certain field(s) are 
downloaded. This procedure resembles crawling on the Web, where more dangling nodes 
emerge with the expansion of crawled web pages. Unless building a citation network covering 
the entire body of literature ever accumulated, one can only construct citation networks for 
certain field(s), domain(s), time(s), etc. And when constructing such networks, some of the 
links will inevitably be excluded and thus produce dangling nodes. 

 
Figure 1. A small citation network with dangling nodes 

Another feature of citation networks is that they strictly follow temporal order: only recent 
publications can cite previous ones. Figure 1 shows that publications at each time point can 
only cite those published before them, and thus the oldest publications in the data set would 
become dangling nodes. Also, types of literature, disciplinarity, and database coverage can all 
result in dangling nodes.  Different types of literature, for example, such as citations from 
books, newspapers, or web pages, are usually not covered in academic databases, and therefore 
have no outbound links and will become dangling nodes. For this study, the focus is on 
informetrics research articles, where their cited articles may cover different disciplines, but 

                                                           
1 The record difference from “Discovering author impact: A PageRank perspective” is that 99 records that have no cited 
references are deleted in the current data set, which is resulted from the index issues of some records in the Web of Science 
database. 
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these cited articles will not be covered in the original data set, and would end up as dangling 
nodes. Regarding different databases, some cited articles may not be collected by the database 
and will become dangling nodes accordingly.   

Methods 
This section explains the method used in this study. A five-paper graph example is referenced 
and presented it in a matrix (step 1); then three approaches are used to handle dangling nodes 
(step 2); and the transformed matrices are inputted to PageRank algorithm (step 3). 
Step 1: Representing citation networks in a matrix 
The papers and citations of citation networks can be presented in a directed graph. The nodes 
represent articles and the directed arcs represent citations. Figure 2 is an example of a five-
paper citation network where paper 1 and 2 are dangling nodes. 

 
Figure 2. A five-page graph with dangling nodes 

Let M be an adjacency matrix with the rows and columns corresponding to the directed graph 
of the network. For a weighted matrix, if there is a link from page j to page i, then the matrix 
entry mij has a value 1/Nj, where Nj is the number of connections (right matrix in equation (1)). 
If there is no link from page j to page i, then the matrix entry mij
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=

03/1000
002/100
3/10000
3/13/1000
3/13/12/100

01000
00100
10000
11000
11100

M

 is zero.  

                                (1) 

Step 2: Handling dangling nodes 
A column where all entries are zero is a dangling node. The matrix M is irreducible only if 
there are no dangling nodes, i.e., all columns have norms of value one. One problem with the 
matrix M is that it is not stochastic (each column sums to one), and a Markov chain is defined 
only for stochastic matrices.  
The first method is to retain all dangling nodes and replace each zero column (vector) with a 
dense column, thus transforming M into 1M  (equation (2)). In equation (2), the dangling 
vector is replaced by a uniform vector eT /n (e is the vector of all ones). For general application, 
a dangling vector is usually replaced by vector vT























=

03/105/15/1
002/15/15/1
3/1005/15/1
3/13/105/15/1
3/13/12/15/15/1

1M

, known as the personalization or teleportation 
vector (Langville & Meyer 2004). The corresponding network is called the whole/original 
network in following paragraphs. 

                                                   (2) 
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The second method is to delete all dangling nodes, as 2M  in equation (3), and replace the 
non-stochastic column to a uniform vector eT
















=

010
001
100

2M

 /n if necessary. The corresponding network is 
called the reduced network in following paragraphs. 

                                                                          (3) 

The third method is to cluster all dangling nodes into one node, and then this node is replaced 
by a uniform vector eT

3M /n, as  in equation (4). The corresponding network is called the 
lumped network in following paragraphs.  
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1000
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3M                                     (4) 

Step 3: Calculating PageRank values for the transformed matrices 
The last step is to input the transformed matrix 1M , 2M , and 3M  to the PageRank 

algorithm:  n
eeMM

T
)1( αα −+= , where 0 ≤ α ≤ 1 (0.85 for this study) and T

n eE 1= . M is 

usually referred to as PageRank matrix. This combination of the stochastic matrix M and a 
stochastic perturbation matrix E ensures that M  is both stochastic and irreducible (no non-zero 
entries). The irreducibility adjustment also ensures that M  will converge to the stationary 
vector πT

Results and analysis 

 (Langville & Meyer, 2004), called PageRank vector. 

Distribution and formation of dangling nodes 
The citation network contains 95,340 nodes (4,997 original downloaded papers and their 
92,021 cited references minus 1,678 overlapping records). In this network, 90,343 cited 
references are not covered in the original downloaded data set, and thus become dangling 
nodes in this citation network. This result is consistent with Langville and Meyer’s (2004) 
finding that in some part of the Web, up to 80% of web pages are dangling nodes.  
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Figure 3. Distribution of number of citations for 90,343 dangling nodes  

Local citation indicates the number of times an article is cited in the citation network, referred 
to as “internal citation” by some scholars (Ma et al., 2008). The distribution of dangling nodes 
shows the power-law feature: the alpha value 737.1−=α is calculated through frequency curve 
estimation. A free toolkit can facilitate the calculation (Rousseau & Rousseau, 2000). Up to 
90% of all references are only cited one or two times, indicating that these references are not 
echoed in other informetrics studies. On the other hand, 129 references are cited more than 30 
times. These publications have high connections with informetrics research.  

Table 1. Top 20 publications based on PageRank 

PageRank 
Rank 

First 
author 

Title* Journal/Publisher** Year Local 
Citation 

Dangling 
Nodes 

1 Schubert A Relative indicators and relational charts for comparative 
assessment of publication output and citation impact  Scientometrics 1986 74 FALSE 

2 Braun T Scientometric indicators World Scientific 1985 55 TRUE 

3 Lotka AJ The frequency distribution of scientific productivity Journal of the Washington 
Academy of Sciences 1926 195 TRUE 

4 Garfield E Citation Indexing Wiley & Sons 1979 178 TRUE 

5 Garfield E Citation analysis as a tool in journal evaluation  Science 1972 146 TRUE 

6 Schubert A Scientometric data files  Scientometrics 1989 80 FALSE 

7 Small H Cocitation in scientific literature  JASIS 1973 165 FALSE 

8 Price DJD Networks of scientific papers  Science 1965 143 TRUE 

9 Price DJD Little science, big science Columbia University Press 1963 117 TRUE 

10 Bradford SC Sources of Information on Specific Subjects Engineering (London) 1934 134 TRUE 

11 Narin F Evaluative bibliometrics Computer Horizons 1976 94 TRUE 

12 Hirsch JE An index to quantify an individual's scientific research 
output  PNAS 2005 94 TRUE 

13 Price DJD General theory of bibliometric and other cumulative JASIS 1976 113 FALSE 
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advantage processes  

14 Moed HF The use of bibliometric data for the measurement of 
university-research performance  Research Policy  1985 69 TRUE 

15 Small H Structure of scientific literatures  Science Studies 1974 102 TRUE 

16 Martin BR Assessing basic research  Research Policy 1983 82 TRUE 

17 Brookes BC Bradford’s law and bibliography of science  Nature 1969 71 TRUE 

18 Egghe L Introduction to informetrics Elsevier 1990 79 TRUE 

19 Bradford SC Documentation Crosby Lockwood 1948 61 TRUE 

20 Beaver DD Studies in scientific collaboration  Scientometrics    1978 57 FALSE 
*Words after “:” and “-” are omitted; 
**PNAS: Proceedings of the National Academy of Sciences; JASIS: Journal of the American Society for Information Science. 

Table 1 shows top 20 publications of the whole network (95,340 nodes) based on PageRank 
scores. Of the top 20 publications, 15 are dangling nodes. Seven dangling nodes are books that 
resemble PDF files on the Web, in that they usually have higher values but cannot cite or link 
to other resources. Some old journal articles are found to be dangling nodes. Examples as 
Lotka’s article titled, “The frequency distribution of scientific productivity” published in 1926. 
Although it is a journal article which has references, they are not collected in the database due 
to its age. Some other dangling nodes (e.g., Citation analysis as a tool in journal evaluation) are 
resulted from the selection of data, since the data only cover records in the INFORMATION 
SCIENCE & LIBRARY SCIENCE subject category, and hence journals categorized as 
MULTIDISCIPLINE, MANAGEMENT and so on are unable to be included.  

Citation in three networks vs. PageRank 
In this section, three methods are applied to identify the effects of dangling nodes on citation 
networks by computing PageRank values under d=0.85 for: (1) the whole network; (2) the 
reduced network; and (3) the lumped network.  
For the last two methods, the issue of defining dangling nodes is important, since the deletion 
of dangling nodes would result in new dangling nodes. For the whole network, if all 90,343 
dangling nodes were deleted, 4,997 nodes would be left. For this remaining network, 2,314 
new dangling nodes would emerge. Theoretically, this procedure can progress in this manner 
until no node is left; however, in practice, the real number is a little above zero (37 for this 
network), since some articles are cited in the preprint version by older publications. 
Of the previous studies on deletion of dangling nodes, Page et al. (1999), Kamvar et al. (2003), 
and Brin et al. (1998) did not mention specifically how these nodes were removed. Page et al. 
(1999) and Brin et al. (1998) generalized this procedure as “remove links that point to any page 
with no outgoing links”, and Kamvar et al. (2003) as “exclude dangling nodes from the Web 
graph until the final few iterations”. But their experimental setups and results imply that they 
only removed the dangling nodes in the original network, not the newly generated dangling 
nodes. Based on this, a similar approach is taken by only deleting the original dangling nodes.  
In the whole network, PageRank values for all 95,340 are calculated, and those for the 4,997 
non-dangling nodes are selected. For reduced network, PageRank scores for 4,997 nodes are 
computed after the deletion of 90,343 dangling nodes. In lumped network, 90,343 dangling 
nodes are first clustered into one super node, and then PageRank values are computed for this 
new network containing 4,998 nodes (4,997 non-dangling nodes plus the super node). The 
distribution between PageRank scores and local citation counts is illustrated in Figure 4. 
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Figure 4. PageRank vs. Local citation counts for non-dangling nodes 

As can be seen in Figure 4, local citation and PageRank are highly correlated, with Spearman’s 
rank correlation coefficient above 0.9 (rs

Table 2. Top 20 articles based on PageRank (non-dangling nodes) 

= 0.9911, 0.9895, and 0.9931 respectively). Bollen et 
al. (2006) interpreted the number of citations as “popularity”, measuring the bounds of impacts 
and PageRank as “prestige”, which considers the quality of impacts. They also found a high 
correlation between citation and PageRank of ISI journals.  

Whole network Reduced network Lumped network 
Schubert A, 1986, SCIENTOMETRICS, V9, P281 Schubert A, 1986, SCIENTOMETRICS, V9, P281 Schubert A, 1986, SCIENTOMETRICS, V9, P281 

Schubert A, 1989, SCIENTOMETRICS, V16, P3 Brookes BC, 1968, J DOC, V24, P247 Almind TC, 1997, J DOC, V53, P404 

Small H, 1973, J AM SOC INFORM SCI, V24, P265 Garfield E, 1979, SCIENTOMETRICS, V1, P359 Brookes BC, 1968, J DOC, V24, P247 

Price DJD, 1976, J AM SOC INFORM SCI, V27, P292 Schubert A, 1983, SCIENTOMETRICS, V5, P59 Schubert A, 1989, SCIENTOMETRICS, V16, P3 

Beaver DD, 1978, SCIENTOMETRICS, V1, P65 Small H, 1980, SCIENTOMETRICS, V2, P277 Garfield E, 1979, SCIENTOMETRICS, V1, P359 

Moed HF, 1995, SCIENTOMETRICS, V33, P381 Almind TC, 1997, J DOC, V53, P404 Ingwersen P, 1998, J DOC, V54, P236 

Schubert A, 1990, SCIENTOMETRICS, V19, P3 Yablonsky AI, 1980, SCIENTOMETRICS, V2, P3 Smith LC, 1981, LIBR TRENDS, V30, P83 

Almind TC, 1997, J DOC, V53, P404 Small H, 1985, SCIENTOMETRICS, V7, P391 Yablonsky AI, 1980, SCIENTOMETRICS, V2, P3 

Ingwersen P, 1998, J DOC, V54, P236 Schubert A, 1989, SCIENTOMETRICS, V16, P3 Schubert A, 1983, SCIENTOMETRICS, V5, P59 

Schubert A, 1983, SCIENTOMETRICS, V5, P59 Beaver DD, 1979, SCIENTOMETRICS, V1, P231 Small H, 1985, SCIENTOMETRICS, V7, P391 

Braun T, 1988, SCIENTOMETRICS, V14, P3 Smith LC, 1981, LIBR TRENDS, V30, P83 Small H, 1980, SCIENTOMETRICS, V2, P277 

Vanraan AFJ, 1996, SCIENTOMETRICS, V36, P397 Ingwersen P, 1998, J DOC, V54, P236 Schubert A, 1990, SCIENTOMETRICS, V19, P3 

Garfield E, 1979, SCIENTOMETRICS, V1, P359 Rabkin YM, 1979, SCIENTOMETRICS, V1, P261 Small H, 1985, SCIENTOMETRICS, V8, P321 

Brookes BC, 1968, J DOC, V24, P247 Haitun SD, 1982, SCIENTOMETRICS, V4, P5 Haitun SD, 1982, SCIENTOMETRICS, V4, P5 

Braun T, 1987, SCIENTOMETRICS, V11, P9 Brookes BC, 1977, J DOC, V33, P180 Brookes BC, 1977, J DOC, V33, P180 

Braun T, 1987, SCIENTOMETRICS, V12, P3 Small H, 1980, J DOC, V36, P183 Beaver DD, 1979, SCIENTOMETRICS, V1, P231 

Small H, 1985, SCIENTOMETRICS, V7, P391 Small H, 1985, SCIENTOMETRICS, V8, P321 Moed HF, 1995, SCIENTOMETRICS, V33, P381 

Braun T, 1987, SCIENTOMETRICS, V11, P127 Bradley SJ, 1992, J INFORM SCI, V18, P225 Christensen FH, 1996, SCIENTOMETRICS, V37, P39 

Egghe L, 1985, J DOC, V41, P173 Schubert A, 1990, SCIENTOMETRICS, V19, P3 Beaver DD, 1979, SCIENTOMETRICS, V1, P133 

Small H, 1985, SCIENTOMETRICS, V8, P321 Christensen FH, 1996, SCIENTOMETRICS, V37, P39 Haitun SD, 1982, SCIENTOMETRICS, V4, P89 
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Table 2 lists top 20 articles based on PageRank for three networks. When compared to Table 1, 
much important literature is not included here, as the exclusion of dangling nodes has resulted 
in significant loss of information, with more than 90% of the records being excluded. Ten 
articles rank top 20 for all three networks, eight rank top 20 for two networks, and 14 rank top 
20 for one network. As for authors, Small H has five articles ranked top 20 for one of the three 
networks, and other authors who have more than one articles ranked top 20 are: Schubert A (4 
articles), Braun T (4 articles), Beaver DD (3 articles), Brookes BC (2 articles), and Haitun SD 
(2 articles). As for the year of publication, 1 article is published in 1960s, 8 in 1970s, 16 in 
1980s, 7 in 1990s, and no article in 2000s. As for journals, Scientometrics is dominant, 
reaching 22 out of 32 unique articles in Table 2, followed by Journal of Documentation (6 
articles) and Journal of American Society for Information Science (2 articles).  

Comparing PageRank in three networks 

Figure 5 shows the scatter plot for 4,997 nodes in three networks. The Spearman’s rank 
correlation coefficient is 0.9872 for whole network vs. reduced network, and 0.9900 for whole 
network vs. lumped network, indicating that most non-dangling nodes have approximately 
same rank status for reduced network and lumped network, and dangling nodes do not have 
major impact on the non-dangling nodes.  

 
Figure 5. Correlation for three networks 

Table 3. Number of dangling nodes for each level 

Level Number of 
dangling nodes 

Accumulated 
number of 

dangling nodes 

Percentile Accumulated 
percentile 

1--10 7 7 70.00% 70.00% 
11--50 28 35 70.00% 70.00% 
51--100 33 68 66.00% 68.00% 
101-500 275 343 68.75% 68.60% 
501--1000 390 733 78.00% 73.30% 
1001-5000 3495 4228 87.38% 84.56% 
5001--10000 4761 8989 95.22% 89.89% 
10001--50000 39526 48515 98.82% 97.03% 
50001--95340 41828 90343 92.25% 94.76% 

Table 3 lists the number of dangling nodes for each PageRank ranking level. For each level, 
dangling nodes take a high percentile, ranging from 66% to 99%. Notably, for top 100 
publications, 68% of them are dangling nodes. The results differ from the dangling nodes on 
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the Web, where most dangling nodes are in the periphery of the Web and have low ranks 
(Langville & Meyer, 2004). The deleting or lumping dangling nodes on the Web, therefore, is 
appropriate for that environment. On the contrary, dangling nodes on citation networks are 
pervasive at each level. Deleting or lumping dangling nodes on citation networks will thus 
result in significant loss of data, especially for the top ranked publications (see Table 2). In 
addition, as can be seen in Figure 6, the rank variance between original and reduced network 
and rank variance between original and lumped network for most articles is zero, which means 
that the non-dangling articles in the network have almost identical rank status. The deleting and 
lumping dangling nodes in fact only have a minor impact on non-dangling nodes in the citation 
network, and thus do not change their overall ranking. Based on this, we argue that the 
methods of deleting and lumping dangling nodes are not appropriate for citation networks, as 
PageRank can yield comparatively similar results using the original network.   

Figure 6. Rank variances 
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Conclusion 
This article evaluates the effects of dangling nodes in citation networks through the PageRank 
algorithm. Hyperlinks on the Web can be updated frequently, whereas the publication aging 
problem is crucial for the formation of dangling nodes in citation networks: articles can only 
cite those published before them. Consequently, the oldest publications in a network 
unavoidably become dangling nodes. Moreover, since citations are linked, the selection of 
certain citations but not others will produce dangling nodes. Another major type of dangling 
node is caused by the coverage of databases.  
Three methods are applied to handle dangling nodes in the citation network: retaining dangling 
nodes, deleting dangling nodes, and clustering dangling nodes into one node. Citation counts 
and PageRank values are correlated, with Spearman’s rank correlation coefficients above 0.9. 
Through comparing the three methods, deleting and lumping methods do not radically change 
the PageRank scores of non-dangling nodes, suggesting that dangling nodes on citation 
networks only have local impact on non-dangling nodes. Moreover, this study also compares 
the ranking variances between the original and reduced networks and rank variance between 
the original and lumped networks, and finds similar results: most non-dangling articles have 
identical rank for the original network and manipulated networks. Different from dangling 
nodes in the Web, highly cited dangling nodes in citation networks are important references, 
and therefore deleting or clustering them would result in loss of information and consequently 
prevent us from gaining an overview of the field. Based on these findings, the null hypothesis 
is thus retained: the non-manipulated network is preferable for handling dangling nodes, since 
PageRank can produce similar result without losing any information. 
As the different rankings in Table 2 demonstrate, the rankings based on PageRank are sensitive 
to the data set selection, the network construction procedure, and the analyzing methods. 
Hence, studies that utilize the PageRank concept need to verify the sensitivity of the algorithm.  
The limitation of this study is that only one data set is used, and thus the conclusion cannot be 
generalized to other scholarly data set. As the strict temporal order of citations affects citation 
networks, the older publications will have an advantage in accumulating citations. In future 
studies, it may be necessary to add temporal dimensions to citations and evaluate them based 
on different publication year. 
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