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5 Triple Space Computing (TSC) has been proposed as communication and coordination paradigm based on the convergence of space-
6 based computing and the Semantic Web. It acts as a global virtual shared space like middleware to enable communication and
7 coordination of semantic data based on the principle of publish and read. This paper presents an overview of the work in progress under
8 Austrian FIT-IT funded TSC project (http:==tsc.deri.at). It presents the evolution of the TSC framework, overall architecture and its usage
9 by Semantic Web Services.
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11 TSC – Triple Space Computing.

12 Triple Space Computing (TSC) ist ein neuartiges Kommunikations- und Koordinationsparadigma, welches aus einer Kombination von
13 ,,Tuple Spaces‘‘ und Semantic Web-Technologien entstanden ist. Der global zugängliche virtuelle Space stellt eine Middleware zur
14 Verfügung, welche es ermöglicht, semantische Daten via Publizieren und Lesen auszutauschen. In diesem Artikel wird die Entstehung und
15 Entwicklung vom FIT-IT Projekt TSC (http:==tsc.deri.at) vorgestellt: die Rahmenbedingungen und Datenmodelle, eine Architektur und
16 Anwendungsbeispiele im Zusammenhang mit Semantic Web Services.
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21 1. Introduction

22 Aiming at enhancing the facilities for automated information pro-

23 cessing on the Internet, Tim Berners-Lee (inventor of the World

24 Wide Web and Director of the W3C) brought up the vision of the

25 Semantic Web. Since existing Web technologies around URI, HTTP,

26 and HTML do not support automated processing of Web content,

27 the aim is to develop technologies that allow describing Web

28 content in a structured manner; furthermore, semantically defined

29 meta-data shall help to overcome the problem of heterogeneity

30 within the Internet as an open and distributed system. Ontologies

31 have been identified as the basic building block for the Semantic

32 Web, as they provide machine-processable, semantic terminology

33 definitions.

34 In conjunction with the idea of the Semantic Web, Web Services

35 are proposed as the technology for automated information pro-

36 cessing, thus combining the benefits of the Web with the strength

37 of component-oriented computation. In fact, Web Services promise

38 to allow automated interaction and seamless integration of several

39 entities of the Web, thus are considered as the technology for next

40 generation information systems with special regard to Enterprise

41 Application Integration, B2B technologies, and e-commerce. As

42 initial Web Service technologies around SOAP, WSDL, and UDDI

43 failed to realize the promise of seamless interoperability, the concept

44 of Semantic Web Services has been conceived. By adding semantics

45 to Web Service descriptions, intelligent inference-based mechanisms

46 shall allow automated discovery, composition, and execution of

47 Web Services.

48 Space-based computing has its roots in parallel processing. Linda

49 was developed by David Gelernter in the mid-1980s at Yale Uni-

50 versity. Initially presented as a partial language design (Gelernter,

51 1985), it was then recognized as a novel communication model on its

52 own and is now referred to as a coordination language for parallel

53 and distributed programming. Coordination provides the infrastruc-

54 ture for establishing communication and synchronization between

55activities and for spawning new activities. There are many instantia-

56tions or implementations of the Linda model, embedding Linda in

57a concrete host language. Examples include C-Linda, Fortran-Linda

58and Shared-Prolog. Linda allows defining executions of activities or

59processes orthogonal to the computation language, i.e. Linda does

60not care about, how processes do the computation, but only how

61these processes are created. The Linda model is a memory model.

62The Linda memory is called tuple space and consists of logical tuples.

63There are two kinds of tuples. Data tuples are passive and contain

64static data, process tuples or ‘‘live tuples’’ are active and represent

65processes under execution. Processes exchange data by writing and

66reading data tuples to and from the tuple space.

67In 2003 and 2004 there have been discussions and collaborations

68involving Tim Berners Lee, Dieter Fensel, Eva Kuehn and Frank

69Leymann on the relationships between the Semantic Web, Web

70Services and space-based computing. Based on that, Dieter Fensel

71published a technical report about ‘‘Triple Based Computing’’

72presenting the idea of a semantically enabled, space-based com-

73munication and coordination middleware as an infrastructure for

74the Semantic Web and Semantic Web Services. These ideas have

75been adopted for the research project ‘‘Triple Space Computing’’

76(TSC) funded by the Forschung, Innovation, Technologie – Infor-

77mationstechnologie (FIT-IT) research programme in the pro-

78gramme line of ‘‘semantic systems and services’’. Triple Space

79Computing inherits the publication-based communication model

80from the space-based computing paradigm and extends it with
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1 semantics. Instead of sending messages back and forth among par-

2 ticipants as in current message-based technologies, TSC-enabled ap-

3 plications will communicate by writing and reading RDF triples in the

4 shared space.

5 2. Triple Space Computing framework

6 Triple Space Computing (TSC) (Fensel, 2004) implies a number

7 of requirements that are not addressed in traditional Linda-like

8 (Gelernter, 1985) systems. The requirements are depicted in

9 Table 1. They are mainly concerned with enhancing tuple spaces

10 with Web and Semantic Web technology like resource identification,

11 Semantic Web data models (Resource Description Framework, RDF

12 (Klyne, Carroll, 2004)) and query functionality (semantic matching).

13 Moreover, TSC is expected to consider the extended scope of in-

14 teraction – tuple spaces traditionally serve as communication plat-

15 form for process and in-house coordination based on a limited

16 number of servers, while TSC aims at a virtually global information

17 space. This results in additional requirements on security, reliability

18 and scalability.

19 With these requirements in mind, the TSC Framework defines

20 the data models, matching algorithms, interaction APIs and security

21 models at the convergence of space-based computing=shared

22 object spaces and the Semantic Web. The former takes influence

23 on the interaction patterns and data matching, while the latter

24 determined in particular the RDF-based data modeling approach

25 and the storage=query engine installation. In other words TSC

26 borrowed from space-based computing its access primitives, trans-

27 actional support and eventing=notification mechanism, while the

28 Semantic Web provides the RDF triple syntax and semantics with

29 the resource identification mechanism (URI) and vocabulary separa-

30 tion mechanism (namespaces). Moreover, the RDF query lan-

31 guages heavily influenced the definition of the matching mechanism

32 through SPARQL (Prud’hommeaux, Seaborne, 2006) and N3QL

33 (Berners-Lee, 2004) technology.

34In the continuation of this section a closer look at the interaction

35API and semantic matching is given. First, however, we explain the

36core data model concepts.

37The interaction API provides all the primitives defined in Linda. The

38operation names and functionality was, however, mainly influenced

39by more advanced commercial tuple space products like TSpaces

40(Lehmann, McLaughry, Wyckoff, 1999) and JavaSpaces (Freeman,

41Arnold, Hupfer, 1999). In short the API provides operations for

42writing, reading, removing in blocking and non-blocking manners.

43Moreover, convenience methods like update and count were also

44defined. More detailed descriptions of the different operations are

45given in Listing 1. Note that, in order to allow Web-like communica-

46tion, the traditional template-based read and take were enhanced

47with URI-based primitives that allow the extraction of information

48by identifier.

49In addition to the core API shown in Listing 1 the TSC Framework

50provides APIs for the publish=subscribe extension, the definition of

51mediation rules, the management of spaces (creation, destruction),

52the handling of transaction (commit, rollback) and the definition of

53roles, permissions and users needed for the security framework. A

54user is associated with a particular role, while for every role and

55space the according access permissions can be set.

56The semantic template matching mechanisms was motivated

57by recent achievement in RDF query languages. A template in Linda

58is a tuple where any of the tuple fields can be replaced by place-

59holders, so-called variables. In TSC templates are defined to be graph

60patterns (detailed definition in (Prud’hommeaux, Seaborne, 2006)).

61The graph patterns are RDF in Notation3 (N3, (Berners-Lee, 2001)),

62where variables can take the place of RDF nodes (cf. Listing 2).

63As graph patterns are at the basis of most RDF query languages

64(in particular SPARQL) the semantic templates can quite easily be

65transformed into queries according to the persistence framework

66(query engine) installed for the Triple Space (cf. Section 3). In that

67way the semantic templates of TSC provide a simple and extensible

Table 1. Triple Space Computing requirements

Web-like communication Application and support of established Web technology like URI for resource identification, stateless
exchange of information like supported by HTTP

Publishing mechanism An interaction model based on the publication of information instead on the exchange of messages
Persistent storage To ensure decoupling in time and in order to provide the ‘publish and read’-paradigm the space

must ensure persistency of data
Notification mechanism For improved coordination and process flow decoupling the installation of a notification mechanism

(publish-subscribe paradigm) is required
Search and query Alignment of Linda-like template matching with Semantic Web query languages in order to provide

semantic template matching
Trust and security Any global information space must ensure confidentiality, integrity, non-repudiation and a trust

mechanism to ensure a reasonable service middleware
Reliability The requirement for persistency implies reliable recovery in case of system failure, as well as transactional

support for atomic operations
Versioning Access logging and tracing of changes is very important when sharing dynamic information in public spaces

Table 2. TSC data model concepts

Triple Space A Triple Space is a uniquely addressable unit of the virtually global information space, i.e., every Triple Space
has its own URI. The global space is built by an number of disjoint Triple Spaces (Fig. 1)

Triple The data model of TSC inherits the syntax (Klyne, Carroll, 2004) and semantics (Hayes, McBride, 2004)
of an RDF triple and the same definitions count

Graph A graph (RDF graph) is defined in (Klyne, Carroll, 2004) as: An RDF graph is a set of RDF triples.
Here too, TSC inherits the implied semantics

Named Graph Named graphs (Carroll et al., 2005) are the fundamental data unit of TSC and as such all communication
is based on named graphs. A named graph is a set of triples named by an URI,
i.e. the pair (URI name, RDF graph g)
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1 means to match data in a Triple Space, analogue to tuple templates

2 in Linda.

3 3. Triple Space kernel

4 Like with the Web, the TSC project proposal aimed at building a

5 Triple Space Computing infrastructure based on the abstract model

6 called REST (Representational State Transfer) (Fielding, 2000). The

7 fundamental principle of REST is that resources are identified by URIs

8 and accessed via a stateless protocol like HTTP in order to transfer

9 representations, such as HTML or XML documents, of resources over

10 the network. HTTP provides a minimal set of operations enough to

11 model any applications domain (Fielding, 2000).

12 Since every representation transfer must be initiated by the client,

13 and every response must be generated as soon as possible (the

14 statelessness requirement) there is no way for a server to transmit

15 any information to a client asynchronously in REST. Furthermore,

16 there is no direct way to model a peer-to-peer relationship (Khare,

17 Taylor, 2004) between clients. Finally, HTTP caching based on expira-

18 tion times for cached requests is not applicable in TSC; where a

19 server has no pre-knowledge of the lifetimes of named graphs. The

20 limitations of REST in the context of TSC motivated our approach of

21 a hybrid architecture called super-peer architecture, which combines

22 traditional client=server and peer-to-peer architectures. In this archi-

23 tecture there are three kinds of nodes: servers, heavy clients and

24 light clients. In the simplest configuration, a particular Triple Space is

25realized by a single server, which is accessed by multiple light clients,

26for example via HTTP, in order to write and read named graphs and

27to receive notifications about graphs of interest. As the number of

28light clients increases, the server may become a bottleneck. To over-

29come this, additional servers can be deployed to provide additional

30access points to a Triple Space for light clients. As a result, a single

31Triple Space is be effectively spanned by multiple servers, which use

32an inter-server protocol to consistently distribute and collect named

33graphs to and from other involved servers. Servers can also be de-

34ployed to act as caching proxies in order to improve clients-perceived

35access times. The third kind of nodes is heavy clients, which are not

Listing 2. Graph pattern-based semantic template

?s a doap:Project; foaf:member ?o This graph pattern queries all triples where the subject is of type doap:Project and where the same
subject has triples indicating the members

?s ?p ?o. ?o a foaf:Person This template matches all triples where the object is of type foaf:Person
?s foaf:name ?a; foaf:mbox ?b This last template matches the triples that contain subjects for which the name and a

mailbox (foaf:mbox) are indicated

Listing 1. TSC Interaction API

write (URI ts, Transaction tx, Graph g): URI
The write operation is used to publish an RDF graph to a triple space identified by the URI ts; the graph name is created by the space
upon termination of the write operation and the data stored internally as named graph. Transactional write is supported

read (URI ts, Transaction tx, Template t): NamedGraph
take (URI ts, Transaction tx, Template t): NamedGraph
query (URI ts, Transaction tx, Template t): Graph
These three template-based operations are applied to retrieve information from the space. Take has the same semantics as read
(retrieval of an entire named graph), however, in a destructive manner. The query primitive on the other hand is used to aggregate
all matching triples from the space ts independently of the associated RDF graph, thus it returns a new Graph instead of a whole
NamedGraph object. Transactional interaction is supported here, too

read (URI ts, Transaction tx, URI n): NamedGraph
take (URI ts, Transaction tx, URI n): NamedGraph
These two operations have the same semantics as their counterparts introduced above. However, they allow retrieving named graphs
by use of their name (URI n)

waitToRead (URI ts, Transaction tx, Template t, TimeOut to): NamedGraph
waitToTake (URI ts, Transaction tx, Template t, TimeOut to): NamedGraph
waitToQuery (URI ts, Transaction tx, Template t, TimeOut to): Graph
The waitTo-operations (the name was taken from TSpaces) provide blocking versions of the retrieval primitives.
While the previously introduced operations return with NULL in case no data was detected, the blocking versions wait until some match
is detected or the timeout runs out. The semantics is otherwise precisely as above

update (URI ts, Transaction tx, NamedGraph ng): boolean
Update is on the one hand a convenience method for take and write, and on the other it ensures that graph names are only created by the
space. Updates can only be done on graphs that are already known by name to the space. Here too, transactional update is supported

count (URI ts, Transaction tx, Template t): long
Count provides the exact same functionality as a loop with counter over a query operation. Note that count only provides an estimate;
just as all other primitives the returned set of triples is not ensure to be complete

Fig. 1. Definition of the Triple Space
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1 always connected to the system. Like servers they are capable to

2 store and replicate Triple Spaces and support users and applications

3 to work off-line with their own replicas. While heavy clients can

4 join existing Triple Spaces spanned by servers, they are not forced

5 to do so.

6 The core functionality of TSC servers and heavy clients is realized

7 by a component called Triple Space kernel (TS kernel). Heavy clients

8 run in the same address space as the TS kernel, and the TS kernel is

9 accessed by its native interface. Light clients use proxies to access

10 the TS kernel of a server node transparently over the network. As a

11 variation a light client can access a TS kernel via a standardized

12 protocol like HTTP, as already mentioned above. In this case a server

13 side component, e.g. a servlet, translates the protocol to the native

14 TS kernel interface. Figure 2 shows the architecture of the TS kernel.

15 Main components of the TS kernel will be briefly described in sub-

16 sections below.

17 3.1 Mediation engine

18 Due to diversity in the nature of different communicating partici-

19 pants over Triple Space, the possibility of the heterogeneity in the

20 data used for communication of different participants may arise and

21 make mediation an important issue to be resolved in the Triple Space

22 Computing. The Mediation Engine (Shafiq et al., 2006b) as part of

23 the TS kernel (Riemer et al., 2007) is concerned with handling this

24 heterogeneity by resolving possibly occurring mismatches among

25 different triples. Assume two TSC participants using different data

26 models for communication. Then an RDF instance in an RDF schema

27 of one TSC participant is needed to be represented in the RDF

28 schema of the other TSC participant without altering or loosing the

29 semantics. For this reason, a mapping language is needed that

30 specifies how to transform the RDF triples according to different

31 RDF Schemas of different communicating participants. The media-

32 tion rules are to be specified at design time and will be processed by

33 a mediation engine at runtime.

34 The TSC mediation engine starts working when users add media-

35 tion mapping rules via mediation management interface. Rules

36 are defined in the Abstract Mapping Language (AML) (Scharffe,

37 de Bruijn, 2005) which is independent of any programming lan-

38 guage and is able to model complex correspondences that may

39 stand between two ontologies. Graphical user interfaces are avail-

40 able to define rules in AML. In TSC mediation rules are themselves

41 stored in Triple Spaces as RDF graphs. As a result, rules created

42 at one server or heavy client can be shared with all other nodes

43 spanning a Triple Space. To represent mediation rules in RDF, an

44 RDF grounding for AML was defined. A component called mediation

45manager implements serialization of rules and helps adding, repla-

46cing and deleting mapping rules.

473.2 Coordination layer

48The coordination layer has three responsibilities, (1) local TS opera-

49tions, such as reading and writing named graphs are executed by

50accessing the local data access layer and by consistently propagating

51changes to other involved TS kernels, (2) changes of a space origi-

52nating from other TS kernels are recognized and applied to the local

53data access layer, and (3) remote TS kernels involved to span a

54certain space are discovered automatically in the network.

55Consistent concurrent access to named graphs is provided via

56transactions. In principle both optimistic and pessimistic transactions

57are applicable for TSC; however, they are not exchangeable due

58to differences in their semantics. We decided to support optimistic

59transactions, because they provide a higher degree of concurrency,

60if read operations are more frequent than write operations, which

61results in a higher throughput, because they are free of deadlocks

62without the introduction of additional, semantically sophisticated

63timeout parameters and finally, because they enable a pragmatic

64integration of a data access layer, which itself does not support a

65transaction interface.

66The prototype implementation of the coordination layer is based

67on the CORSO (Coordinated Shared Objects Spaces) (Kühn, 1994)

68middleware. CORSO is a peer-to-peer implementation of a virtual

69shared data space, which allows reading and writing structured,

70shared data objects. It has a built-in distributed transaction manager

71and distributes spaces via an asynchronous, primary-based replica-

72tion protocol. In the TSC prototype, Triple Spaces and named graphs

73are mapped to distributed CORSO data structures. TSC operations

74like reading and writing named graphs are translated to algorithms

75on these CORSO data structures. CORSO further provides a notifica-

76tion mechanism to get informed about changes in the shared space.

77The coordination layer uses CORSO notifications to react on inserted

78or removed named graphs and to asynchronously update the under-

79lying data access layer. The discovery of TS kernels involved in

80spanning a Triple Space is based on the Domain Name System

81(DNS) for wide area networks and on a new protocol based on

82UDP-multicast and CORSO for local area networks.

833.3 Data access layer

84Any Triple Space implementation requires a storage and retrieval

85framework to (1) ensure the desired persistency, (2) to support se-

86mantic template matching based on Semantic Web query languages

87and (3) to provide at least a limited amount of reasoning. In order to

88bind arbitrary data stores and query engines to TS kernels we define

89a Data Access Layer (DAL) which defines operations for storing,

90retrieving and deleting RDF graphs.

91The prototype implementation of the data access layer is based on

92YARS (Yet Another RDF Store) (Harth, Decker, 2005), a lightweight

93persistence framework developed in Java at DERI Galway which uses

94optimized indexes for better query performance. Besides the note-

95worthy performance, the fact that the consortium has access to the

96source code and the implementers through DERI Innsbruck, YARS

97has in particular be chosen as it is constructed to store quads or

98contextualized triples instead of plain RDF triples. This allows for

99direct usage of the chosen data model based on named graphs

100(Carroll et al., 2005).

101One of the main tasks of the data access layer is to translate

102templates into N3QL queries for YARS. To keep the Data Access

103API (DAPI) as simple as possible it only defines one operations to

104retrieve data: retrieve(URI ts, Transaction tx, Template t):Graph. The

105TSC API, however, allows a space user to retrieve data either based

106on templates or by use of the graph name. As the DAPI does not

Fig. 2. Triple Space kernel architecture
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1 directly support an interface for URI-based retrieval it is also neces-

2 sary to adapt the operation layer in order to transform those

3 requests into templates. First, the URI has to be packed into a graph

4 pattern template according to (Riemer et al., 2006) as part of the

5 Operation Layer processing. The request is then forwarded in form

6 of the template to the DAL, where the template is transformed into

7 a N3QL query that can be sent to the YARS servlet.

8 4. Triple Space Computing for Semantic Web Services

9 Semantic Web Services have been emerged to enable dynamic Web

10 Service discovery, composition and execution by using semantic

11 descriptions using ontologies as its basis. The Semantic Web Services

12 framework has been envisioned (Fensel, Bussler, 2002). It pro-

13 vides an ontology, called Web Service Modeling Ontology (WSMO)

14 (Roman et al., 2006), a language, called Web Service Modeling

15 Language (WSML) (Roman et al., 2006), which provides a formal

16 syntax and semantics for WSMO, and an execution environment,

17 called Web Service Execution Environment (WSMX) (Roman et al.,

18 2006), which is a reference implementation for WSMO, offering

19 support for interacting with SWS.

20 The currently used communication paradigm in Semantic Web

21 Services (SWS) (Fensel, Bussler, 2002) is synchronous, i.e. users

22communicate with SWS and SWS communicate with real world

23Web Services by sending synchronous messages. The problem with

24synchronous communication is that it requires a quick response as

25it makes sender halt until the response is received, which is not

26possible in case of execution process in SWS as it involves heavy

27processing of semantic descriptions in terms of discovery, selection,

28composition, mediation, execution. This problem has been over-

29come by introducing Triple Space Computing as being semantic

30based asynchronous communication paradigm for communication

31and coordination of SWS. The Web Services Execution Environment

32(WSMX) is our reference implementation for SWS in which the Triple

33Space Computing middleware is being integrated. Using Triple

34Space Computing in WSMX enables to support greater modulariza-

35tion, flexibility and decoupling in communication and coordination

36and to be highly distributed and easily accessible. Multiple TS kernels

37coordinate with each other to form a virtual space that acts as

38underline middleware which is used for communication by reading

39and writing data.

40The integration of WSMX and Triple Space Computing has

41been proposed in four major aspects (Shafiq et al., 2006a): (1)

42enabling component management in WSMX using Triple Space

43Computing, (2) allowing external communication grounding in

Fig. 3. Triple Space Computing for WSMX
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1 WSMX, (3) providing resource management, and (4) enabling com-

2 munication and coordination between different inter-connected

3 WSMX systems. Each of the integration aspect is described in the

4 subsections below. In summary, Triple Space Computing acts as a

5 middleware for WSMX, Web Services, different other Semantic Web

6 applications, and users to communicate with each other. Figure 3

7 shows an initial architecture of each integration aspect.

8 4.1 Component management in WSMX using Triple Space

9 Computing

10 WSMX has a management component that manages the over all

11 execution of the system by coordinating different components based

12 on dynamic execution semantics. In this way there has been made a

13 clear separation between business and management logic in WSMX.

14 The individual components have clearly defined interfaces and have

15 component implementation well separated with communication

16 issues. Each component in WSMX has a wrapper to handle the

17 communication issues. The WSMX manager and individual compo-

18 nents wrappers are needed to be interfaced with Triple Space in

19 order to enable the WSMX manager to manage the components

20 over Triple Space. The communication between manager and wrap-

21 pers of the components will be carried out by publishing and

22 subscribing the data as a set of RDF graphs over triple space. The

23 wrappers of components that handle communication will be inter-

24 faced with Triple Space middleware. The WSMX manager has been

25 designed in such a way that it could distinguish between the data

26 flows related with the business logic (execution of components based

27 on the requirements of a concrete operational semantic) and the

28 data flows related with the management logic (monitoring the com-

29 ponents, load-balancing, instantiation of threads, etc.).

30 There are two ways for WSMX components to access a TS core,

31 i.e. heavy clients embed the TS core as a Java package and the

32 application and TS core run in the same Java Virtual Machine. In

33 this case CORSO (Kühn, 1994) and YARS (Harth, Decker, 2005)

34 runtimes need to be deployed together with the heavy client ap-

35 plication. The second way is to deploy a standalone TS kernel as a

36 server, which may be accessed by multiple light clients via remoting.

37 Both scenarios can work. However, we recommend using light

38 clients in case of communication and coordination within the WSMX

39 system as in such case it will make the keep the complexity level of

40 components wrapper and the access of light client embedded in

41 wrappers will be local to the Triple Space kernel.

42 4.2 Multiple WSMX instances interconnection using Triple

43 Space Computing

44 After enabling WSMX Manager to perform communication and

45 coordination of components internally, the next step will be to

46 enable the communication and coordination of different WSMXs

47 over Triple Space, i.e. forming a cluster of different interconnected

48 WSMX nodes to support distributed service discovery, selection, com-

49 position, mediation, invocation, etc. The communication model used

50 in the current implementation of WSMX is synchronous. Synchronous

51 communication is beneficial when immediate responses are re-

52 quired. Since WSMX is dealing with Web service Discovery, Media-

53 tion and Invocation, immediate responses are usually not available.

54 In such situations, the synchronous communication will be costly as

55 it forces the system (component) to remain idle until the response is

56 available. In order to minimize such overhead imposed by synchro-

57 nicity, Triple Space can serve as a communication channel between

58 WSMXs thereby introducing synchronicity between communicating

59 parties. The Triple Space supports purely asynchronous communica-

60 tion that optimizes performance as well as communication robustness.

61 The figure above shows the idea of having different WSMX systems

62 to be interconnected to each other over Triple Space. This will help

63the WSMX in providing distributed service discovery, selection, com-

64position, mediation and invocation. There can be the possibility that

65different WSMX systems are running at different location over the

66globe containing different information (i.e. semantic description of

67commercial Web Services, mediation rules, ontologies and goals).

68The service requestor local to a particular WSMX will not be aware

69of other WSMX systems and the data contained by other WSMX

70systems. In this case, it will enable different WSMX systems to be

71aware of each other and to access the data of other WSMXs over

72Triple Space, or redirect the goals to other WSMXs.

734.3 External communication grounding in WSMX

74using Triple Space Computing

75WSMX acts as a semantic middleware between users and real world

76Web Services. Currently, due to existence of message oriented

77communication paradigm, users communicate with WSMX and

78WSMX communicate with Web Services synchronously. The external

79communication manager of WSMX is needed to provide a support

80to communicate over Triple Space. The interfaces for sending and

81receiving external messages by WSMX are needed to provide a

82grounding support to alternatively communicate over Triple Space.

83This needs to be resolved by addressing several issues, i.e. invoker

84component in WSMX is needed to support Web Services Description

85Language (WSDL) and Simple Object Access Protocol (SOAP) com-

86munication binding over Triple Space. The Entry point interfaces will

87be interfaced with Triple Space middleware in order to provide the

88glue between existing Web Services standards and Triple Space

89Computing.

90The Communication Manager will be provided with Triple Space

91based grounding support. It will help in providing an additional or

92alternative Triple Space based access interface to access WSMX. It

93will enable Triple Space clients to submit Goals to WSMX via Triple

94Space which will bring the real sense of asynchronous communi-

95cation of Triple Space because normally Goal execution in WSMX

96(performing service discovery, selection, composition, mediation and

97invocation) takes significant amount of time. When the service

98requestors will be able to submit the Goals to WSMX over Triple

99Space, it will not make them hang-up with WSMX until the Goal has

100been executed and will make the communication process of users

101with WSMX more flexible and reliable.

1024.4 Resource management in WSMX using Triple Space

103Computing

104WSMX contains different repositories to store ontologies, goals,

105mediators and Web Services descriptions as WSML based files. The

106internal repositories of WSMX are needed to be made optional and

107enable to store the WSML based data as set of RDF named graphs in

108Triple Space Storage. This is mainly concerned with transforming the

109existing representation of data in form of WSML into RDF represen-

110tation. The repository interfaces are needed to be interfaced with

111Triple Space middleware. The Resource Manager in WSMX currently

112manages the persistent storage of data in the repositories. The

113Resource Manager provides a heterogeneous interface for WSMX.

114The component implementing this interface is responsible for storing

115every data item WSMX uses. The WSMO API provides a set of Java

116interfaces that can be used to represent the domain model defined

117by WSMO. WSMO4J (http:==wsmo4j.sourceforge.net) provides

118both the API itself and a reference implementation. Currently WSMX

119defines interfaces for six repositories. Four of these repositories

120correspond to the top level concept of WSMO, i.e. Web Services,

121ontologies, goals, and mediators. The fifth repository is for non-

122WSMO data items e.g. events and messages. Finally, the sixth repo-

123sitory stores WSDL documents used to ground WSMO service

124descriptions to SOAP.
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1 The storage of WSMO top level entities on Triple Space will help in

2 enhancing and fastening the process access of the data items after-

3 wards. For instance, in the current discovery mechanism of WSMX,

4 the WSML reasoners have to reason on each and every Web Service

5 description available in the local repositories which takes significant

6 amount of time. When the Web Services descriptions will be stored

7 over Triple Space, the template matching based simpler reasoning

8 will be used as a first step in order to filter-out the most relevant and

9 possibly required Web Service descriptions. The filtered Web Services

10 descriptions based on template based matching over Triple Space

11 are retrieved and converted back to WSML to be used by WSML

12 reasoners. It makes the process of discovery simpler and faster by

13 performing reasoning operations only on relevant Web Service

14 descriptions rather than all.

15 5. Conclusions

16 In this paper we provide an overview of overall work in-progress in

17 Triple Space Computing (TSC) project funded by the Austrian Gov-

18 ernment under the program FIT-IT Semantic System. In the project

19 we are building the Triple Space Computing as a communication

20 and coordination framework for semantic technologies. In this paper

21 we presented the background of TSC, introduction, state-of-the-art,

22 TSC framework, data and interaction model, TSC architecture and

23 TSC integration with Semantic Web Services. The project has en-

24 tered into its final phase where theoretical work has been completed

25 and currently prototypes are under development which will be fol-

26 lowed by extensive evaluation.
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35 of the Christian Doppler Forschungsgesellschaft.

Johannes Riemer

studied computer science at the Vienna

University of Technology and received a

degree in Computer Science (Diploma) in

2003. During his studies his special interests

have been on distributed systems, real-time

systems and object oriented languages.

Parallel to university he has been working

in industry since 1999, where he gained

experience in design and development of

distributed applications and virtual shared

47memory middleware. Since 2005 he is a PhD student at the Vienna

48University of Technology with a research focus on space-based

49computing, virtual shared memory, triple space computing, seman-

50tic web and service oriented architecture.

Ying Ding

is senior consultant in Electronic Web Ser-

vices GmbH. Prior to this she was a re-

searcher at the Division of Mathematics

and Computer Science at the Free University

of Amsterdam. She completed her Ph.D. in

School of Applied Science, Nanyang Tech-

nological University, Singapore. She has

been involved in various European-Union

funded projects and served as consultant

in many projects between universities and

62the companies. Her current interest areas include semantic web,

63web services, semantic information retrieval, knowledge and con-

64tent management, e-commerce and commercial application of

65semantic web technology.

Bernhard Draxler

is working as software developer and de-

signer for data acquisition software based

on java=Cþþ for windows and Embedded

Linux with SQL-databases at Thonhauser

Data Engineering GmbH, Leoben, Austria.

He received his diploma in 1997 on Vienna

University of Technology. Prior to this cur-

rent position, he worked on virtual shared

memory system for windows and Unix Linux

at Tecco software development CORP, at

77IBM Austria on development of workflow management systems

78and at Vienna software publishing team leader development of an

79Office package for OS=2.
80

originalarbeiten
D. Fensel et al. TSC – Triple Space Computing

8 | heft 1/2.2007 e&i elektrotechnik und informationstechnik


