
Ranking Semantic Web Services Using Rules Evaluation
and Constraint Programming

Jośe Maŕıa Garćıa1, Ioan Toma2, David Ruiz1, Antonio Ruiz-Cort́es1, Ying Ding3,
and Juan Miguel Ǵomez4⋆

1 University of Sevilla
E.T.S. Ing. Inforḿatica, Av. Reina Mercedes s/n, 41012 Sevilla, Spain

{josemgarcia, druiz, aruiz}@us.es
2 Semantics Technology Institute - STI Innsbruck, University of Innsbruck

Technikerstrasse 21a, A-6020 Innsbruck, Austria
ioan.toma@sti2.at

3 Indiana University
Bloomington, IN 47405, USA
dingying@indiana.edu

4 Carlos III University
Madrid, Spain

juanmiguel.gomez@uc3m.es

Abstract. Current Semantic Web Services discovery and ranking proposals are
based on user preferences descriptions whose expressiveness are limited by the
underlying logical formalism used. Thus, highly expressive preference descrip-
tions, such as utility functions, cannot be handled by the kind of reasoners tradi-
tionally used to perform Semantic Web Services tasks. In this work, we outline a
hybrid approach to allow the introduction of utility functions in user preferences
descriptions, where both rules evaluation and constraint programming are used
to perform the ranking process. Our proposal extends the Web Service Model-
ing Ontology with these descriptions, providing a highly expressive framework
to specify preferences, and enabling a more general ranking process, which can
be performed by different engines.

1 Introduction

Semantic Web Services (SWS) technologies enable the automatization of service re-
lated tasks, such as discovery, ranking, and selection. In particular, discovery of services
that fulfill certain user requirements have been widely treated in several proposals, such
as [4, 6, 7, 13], among others. These proposals are mostly based on Description Logics
reasoners, which match service descriptions with user requirements. These discovered
services need to be ranked in order to select the best serviceaccording to stated user
preferences.

⋆ This work is partially supported by the European Commission (FEDER) andSpanish Govern-
ment under CICYT project Web-Factories (TIN2006-00472), by theAndalusian Government
under project ISABEL (TIC-2533), and by the EU FP7 IST project 27867, SOA4ALL - Ser-
vice Oriented Architectures For All.

2

Ranking and selection proposals use specific descriptions to perform these tasks.
These descriptions, i.e. user preferences, are based on non-functional properties of ser-
vices, which specify the quality of service preferences with respect to parameters that
cannot be considered functional or behavioral, such as price, security, reliability, etc.
Thus, discovered services are ranked and selected depending on their non-functional
properties. Although there are several proposals that provide a semantic framework
to express these properties in a selection scenario, such as[8, 16, 18], preferences can
only be expressed using tendencies or order conditions, so their expressiveness is re-
stricted. Other proposals use utility functions to describe preferences [5, 10], which
provide higher expressiveness and make use of Constraint Programming (CP) to per-
form the ranking. However, those approaches do not provide asemantic framework to
define these utility functions.

Our proposal presents a hybrid architecture to perform service ranking integrated
in the Web Service Modeling Ontology (WSMO)[9]. Thus, user preferences are mod-
eled using the Web Service Modeling Language (WSML)[12], adding support to utility
functions. The proposed architecture integrate a reasoning engine that support rules
evaluation and a CP solver. Our hybrid approach decouples user preferences descrip-
tions with the engines that perform the ranking, and allows ahigh expressiveness when
describing preferences, by means of utility functions.

The rest of the paper is structured as follows: Section 2 presents how services de-
scriptions and user preferences are modeled using utility functions within WSMO and
its language WSML. Then, in Sec. 3 the proposed architecture for service ranking is
introduced, describing its components and implementationrequirements. Related work
is discussed in Sec. 4. Finally, Sec. 5 sums up our contribution and outlines further
research that should be addressed.

2 Modeling Approach

In this section we briefly introduce our approach for modeling non-functional proper-
ties of services and user preferences. We use WSMO and WSML to model services
and user requests. We are mainly interested in modeling non-functional properties per-
spectives of service providers and service requestors. Therest of the section provides
modeling details for both service description (Sec. 2.1) and user requests and prefer-
ences (Sec. 2.2).

2.1 Service Description

In WSML[12], non-functional properties are modeled in a way similar to which capa-
bilities could be currently modeled in WSML. Non-functionalproperties are defined
using logical expressions same as pre/post-conditions, assumptions and effects are be-
ing defined in a capability. The terminology needed to construct the logical expressions
is provided by non-functional properties ontologies (c.f.[14]).

For exemplification purposes we use the SWS Challenge5 Shipment Discovery sce-
nario. We are mainly interested in two aspects of shipment services for this particular

5 http://sws-challenge.org/

3

scenario, namely discounts and obligations. The shipping services allows requestors to
order a shipment by specifying, sender’s address, receiver’s address, package informa-
tion and a collection interval during which the shipper willcome to collect the package.

Listing 1 displays a concrete example on how to describe one non-functional prop-
erty of a service (i.e. Runner), namely obligations. Due to space limitations the listing
contains only the specification of obligations aspects without any functional, behav-
ioral or any other non-functional descriptions of the service. In an informal manner,
the service obligations can be summarized as follows: (1) incase the package is lost or
damaged Runner’s liability is the declared value of the package but no more than 150$
and (2) packages containing glassware, antiques or jewelryare limited to a maximum
declared value of 100$.

Listing 1. Runner’s obligations
� �

namespace { ”WSRunner.wsml#”,
runner ”WSRunner.wsml#”, so ”Shipment.wsml#”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax/”,
up ”UpperOnto.wsml#”}

webService runnerService
nonFunctionalProperty obligations
definition
definedBy

//in case the package is lost or damaged Runners liability is
//the declared value of the package but no more than 150 USD
hasPackageLiability(?package, 150):− ?package[so#packageStatus hasValue ?status] and
(?status = so#packageDamaged or ?status = so#packageLost) and
packageDeclaredValue(?package, ?value) and ?value>150.

hasPackageLiability(?package, ?value):− ?package[so#packageStatus hasValue ?status] and
(?status = so#packageDamaged or ?status = so#packageLost) and
packageDeclaredValue(?package, ?value) and ?value =< 150.

//in case the package is not lost or damaged Runners liability is 0
hasPackageLiability(?package, 0):− ?package[so#packageStatus hasValue ?status] and
?status != so#packageDamaged and ?status != so#packageLost.

//packages containing glassware, antiques or jewelry
//are limited to a maximum declared value of 100 USD
packageDeclaredValue(?package, 100):−
?package[so#containesItemsOfType hasValue ?type, so#declaredValue hasValue ?value] and
(?type = so#Antiques or ?type = so#Glassware or ?type = so#Jewelry) and ?value>100.

packageDeclaredValue(?package, ?value):−
?package[so#containesItemsOfType hasValue ?type, so#declaredValue hasValue ?value] and
((?type != so#Antiques and ?type != so#Glassware and ?type != so#Jewelry) or ?value<100).

capability runnerOrderSystemCapability
interface runnerOrderSystemInterface

� �

Runner’s obligations are expressed as logical rules in WSML.Similarly other non-
functional properties can be encoded using WSML rules.

2.2 User Preferences

User preferences express how important certain non-functional parameters are from the
service user’s point of view. Thus, preferences are taken into account when perform-
ing ranking tasks. Utility functions are a highly expressive formalism to describe user

4

preferences. An utility function is defined as a normalized function (ranging over[0, 1])
whose domain is a non-functional parameter, giving information about the preferred
range of values for that non-functional parameter. Figure 1shows two utility functions
defined as piecewise functions. On the one hand, lower price values are preferred. Thus,
the highest utility value is returned by that function if price is below60 dollars, decreas-
ing that value linearly until300 dollars, where the utility is at its minimum. On the other
hand, the user prefers higher obligations values, so the utility function is modeled as
shown in Fig. 1, varying from the minimum utility value (0) when the liability value is
below50, and growing linearly until liability reaches130, where the utility is maximum
(1).

��������������
� �� ��� ��� ��� ��� ����	
�
	�

���� ��� ��������������
� �� ��� ������ ��!

"#$%&'(%)* +$%'#%$%(, -'$./0
Fig. 1. Price and obligations utility functions.

In order to express user preferences combining several non-functional properties,
each utility function has to be associated with a relative weight. Thus, in a multi-criteria
ranking process, the user preference value that is used to rank services is a weighted
composition of the associated utility function values. That user preferences definitions
are included as a part of a goal. For instance, from the goal description shown before,
a user may want to rank services with respect to the utility functions for price and
obligations from Fig. 1, with associated weights of0.6 and0.4, respectively.

Listing 2 contains the WSML encoding of the previous presented user preferences.
Such preferences are expressed as part of the user request that we call goal, so both
the requested capability and the user preferences are described using the same formal-
ism. Preferences are encoded as WSML rules which enables reasoning which in turn
provides support for service related tasks in which preferences are considered (e.g. dis-
covery, selection, and ranking). As discussed later in Sec.3, besides the actual reasoning
with WSML rules, a translation of the user preferences expressed as rules to CP is pro-
vided. This enables the use of utility functions for modeling preferences which provide
high expressiveness.

To model preferences in WSML we defined a binary predicatehasPreference
that takes as first argument the identifier of a non-functional property and as second
argument the preferred value of that non-functional property. For each interval in the
domain of preference function, a WSML rule is defined. At runtime, namely during

5

ranking process, one of the rules will fire and the value of thepreference function is
determined.

Listing 2. Goal description with preferences encoded in WSML
� �

namespace { ”Goal1.wsml#”,
req ”Goal1.wsml#”, so ”Shipment.wsml#”,
dc ”http://purl.org/dc/elements/1.1#”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax/”,
pref ”http://www.wsmo.org/ontologies/nfp/Preferences.wsml#”,
up ”http://www.wsmo.org/ontologies/nfp/upperOnto.wsml#”}

goal Goal1
nfp

up#order hasValue pref#ascending
up#nfp hasValue {up#hasObligations, up#hasPrice}
up#nfpFunction hasValue {up#hasObligationsFunction, up#hasPriceFunction}
up#instances hasValue req#GumblePackage
up#hasPreference hasValue req#DefinitionPreference

endnfp

capability requestedCapability
postcondition
definedBy
?order[so#to hasValue Gumble,so#packages hasValue GumblePackage] memberOf so#ShipmentOrder and
Gumble[so#firstName hasValue ”Barney”, so#lastName hasValue ”Gumble”,
so#address hasValue GumbleAddress] memberOf so#ContactInfo and
GumbleAddress[so#streetAddress hasValue ”320 East 79th Street”,
so#city hasValue so#NY, so#country hasValue so#US] memberOf so#Address.

ontology requestOntology

instance GumblePackage memberOf so#Package
so#length hasValue 10
so#width hasValue 2
so#height hasValue 3
so#weight hasValue 10
so#declaredValue hasValue 150
so#containesItemsOfType hasValue so#Glassware
so#packageStatus hasValue so#packageLost

axiom DefinitionPreferece
definedBy

hasPreference(up#hasObligations, 100):−
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue >= 130.

hasPreference(up#hasObligations, 0):−
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue < 50.

hasPreference(up#hasObligations, ?value):−
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue < 130
and ?hasObligationsValue >= 50 and ?value=(10∗?hasObligationsValue−500)/8.

hasPreference(up#hasPrice, 100):−
up#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue <= 60.

hasPreference(up#hasPrice, 0):−
up#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue >300.

hasPreference(up#hasPrice, ?value):−
up#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue <= 300
and ?hasPriceValue > 60 and ?value=(3000−10∗?hasPriceValue−500)/24.

axiom DefinitionWeights
definedBy

hasWeights(up#hasObligations, 40).
hasWeights(up#hasPrice, 60).

� �

6

3 A Hybrid Architecture for Service Ranking

Having modeled the service non-functional properties and user requests and preferences
as described in Sec.2, we provide in this section a service ranking approach that uses
hybrid descriptions of services and user requests, i.e. a combination of Logic Program-
ming (LP) Rules and CP. LP Rules expressed as WSML logical expressions/axioms
are mainly used to model services descriptions. User requests and preferences in terms
of non-functional properties are expressed using a combination of LP Rules and CP
formulas, being encoded with the use of the same WSML logical expressions/axioms.
These expressions allow to define different kind of utility functions.

To handle WSML logical expressions/axioms we use the IRIS6 reasoner. In fact, any
other reasoner that can handle WSML rules evaluation could beused, e.g. KAON27 or
MINS8, provided that it is integrated using the WSML2Reasoner framework [11]. For
the CP part the Choco9 system is used. The overall envision architecture is provided in
Fig. 2.

Fig. 2. Hybrid Architecture for Service Ranking.

As depicted in Fig. 2, the architecture of the hybrid rankingsystem contains a set
of loosely coupled components. The user submits a request formalized as a WSML

6 http://sourceforge.net/projects/iris-reasoner/
7 http://kaon2.semanticweb.org/
8 http://dev1.deri.at/mins/
9 http://choco-solver.net/index.php?title=MainPage

7

goal through anAccess interface component. That request is formalized as presented in
Sec. 2. Moreover, that access interface can be used within different discovery solutions
(such as UDDI [1] or web service search engines like seekda10), provided that services
are annotated with WSML.

Once submitted into the system the request is processed by the Extractor compo-
nent. The job of the extractor component is to parse the givenrequest, and to identify
the requested non-functional properties and their weights(the importance the user gives
to each non-functional property).

For the evaluation of the WSML rules that are used to encode thenon-functional
properties of the services we use the IRIS reasoner. IRIS is an extensible reasoning en-
gine for expressive rule-based languages that supports safe and un-safe datalog, nega-
tion as failure, function symbols, support for XML data types, and built-in predicates.
The overall process is based on our previous work described in [15]. In a nutshell
each of the rules corresponding to a non-functional property of a service is evaluated,
and the values obtained are normalized. For the goal evaluation we use a CP approach
to evaluate user preferences. More precisely, user preferences that are formalized as
WSML rules are being translated to CP format using theRule2CP component. The
translated representation is evaluated using the Choco implementation. Choco is a Java
library that allows the modeling of classical constraint satisfaction problems, optimiza-
tion, scheduling and explanation-based CP, programmatically. During this evaluation
step the rank values corresponding to each service that wereevaluated using the IRIS
reasoner are being used in the CP evaluation. Additionally,for each service, we perform
an aggregation of the weighted non-functional properties values.

Finally the associated rank values for each service are ordered and the ranked list
of services are provided back to the user. The ordered list isbeing constructed by the
Sorter computer. This list can be used as the input for the services selection process.

4 Related Work

There are some ranking and selection proposals that are based on non-functional prop-
erties. Thus, Pathaket al. use domain specific ontologies so services are ranked de-
pending on matching degrees and weighted functions [8]. Similarly, Zhou et al. rank
services using matching degrees and provide an extension toDAML-S in order to in-
clude quality-of-service profiles [18]. Concerning WSMO, there is also an extension
proposed by Wanget al. that define a ranking model based on a quality matrix, where
user preferences are defined in terms of preferred tendencies and weights between each
non-functional property [16]. Another WSMO extension, which our proposal is based
on, is proposed in [15], where a multi-criteria ranking approach is presented.

Although not specifically focused on ranking services, [17]presents an approach
where service composition is optimized using defined utility functions within an Integer
Programming algorithm. Utility functions are also used to express user preferences in
[10]. In that work, Ruiz-Cort́eset al. perform the ranking using CP. This paradigm is
also used in [5], where an ontology of non-functional properties is introduced to define

10 http://seekda.com/

8

them, though user preferences are not semantically defined.In [2] a generic hybrid
architecture to perform discovery, ranking and selection is proposed, which is extended
in [3] with the inclusion of a first approach to semantically describe user preferences.

5 Conclusions and Future Work

In this work, a SWS ranking proposal, which is based on semantic descriptions of non-
functional properties and user preferences, is described.The modeling approach taken
is to model non-functional properties of services as WSML rules. Furthermore, user
preferences and weights are also modeled using rules withingoals. These descriptions
are processed by a hybrid service ranker, whose architecture is also depicted in this
work. Our approach extends WSMO descriptions in order to express user preferences
with utility functions. Moreover, our hybrid architectureallows to perform service rank-
ing tasks using different reasoners and CP solvers, decoupling the preferences definition
with actual reasoners used.

As future work, we plan to further develop a prototype of our hybrid service ranker,
so a full set of test cases can be performed using our ranking approach. Additionally,
we plan to study and integrate different reasoners and CP solvers, comparing their per-
formance and features. Thus, more complex utility functions have to be tested within
our proposal, possibly defining a comprehensive catalog of user preferences definitions.

References

1. L. Clement, A. Hately, C. von Riegen, and T. Rogers. UDDI Version 3.0.2. Technical report,
OASIS, October 2004.

2. J. M. Garćıa, D. Ruiz, A. Ruiz-Cort́es, O. Mart́ın-Dı́az, and M. Resinas. An hybrid, QoS-
aware discovery of semantic web services using constraint programming. In B. Krämer,
K.-J. Lin, and P. Narasimhan, editors,ICSOC 2007, volume 4749 ofLNCS, pages 69–80.
Springer, 2007.

3. J. M. Garćıa, D. Ruiz, A. Ruiz-Cort́es, and M. Resinas. Semantic Discovery and Selection:
A QoS-Aware, Hybrid Model. InThe 2008 International Conference on Semantic Web and
Web Services. CSREA Press, 2008.

4. J. Gonźalez-Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of
services. Technical Report HPL-2001-265, Hewlett Packard Labs, 2001.

5. K. Kritikos and D. Plexousakis. Semantic QoS metric matching. InECOWS 2006, pages
265–274. IEEE Computer Society, 2006.

6. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. InInt. World Wide Web Conference, pages 331–339, 2003.

7. C. Lutz and U. Sattler. A proposal for describing services with DLs. In Int. Workshop on
Description Logics, 2002.

8. J. Pathak, N. Koul, D. Caragea, and V. G. Honavar. A frameworkfor semantic web services
discovery. InWIDM ’05: Proceedings of the 7th annual ACM international workshop on
Web information and data management, pages 45–50, New York, NY, USA, 2005. ACM
Press.

9. D. Roman, H. Lausen, and U. Keller (Ed.). Web service modeling ontology (WSMO). Work-
ing Draft D2v1.4, WSMO, 2007. Available from http://www.wsmo.org/TR/d2/v1.4/.

9

10. A. Ruiz-Cort́es, O. Mart́ın-Dı́az, A. Duŕan-Toro, and M. Toro. Improving the automatic
procurement of web services using constraint programming.Int. J. Cooperative Inf. Syst,
14(4):439–468, 2005.

11. H. Lausen S. Grimm, U. Keller and G. Nagypal. A reasoning framework for rule-based
WSML. In In Proceedings of 4th European Semantic Web Conference (ESWC) 2007. IEEE
Computer Society, 2007.

12. N. Steinmetz and I. Toma (Ed.). The Web Service Modeling Language
WSML. Technical report, WSML, 2008. WSML Working Draft D16.1v0.3.
http://www.wsmo.org/TR/d16/d16.1/v0.3/.

13. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery, interaction
and composition of semantic web services.J. Web Sem., 1(1):27–46, 2003.

14. I. Toma and D. Foxvog. Non-functional properties in web services. Working Draft
D28.4v0.1, Digital Enterprise Research Institute (DERI), August 2006. Available from
http://www.wsmo.org/TR/d28/d28.4/v0.1/.

15. I. Toma, D. Roman, D. Fensel, B. Sapkota, and J. M. Gomez. A multi-criteria service ranking
approach based on non-functional properties rules evaluation. In B.Krämer, K.-J. Lin, and
P. Narasimhan, editors,ICSOC 2007, volume 4749 ofLNCS, pages 435–441. Springer, 2007.

16. X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A QoS-aware selection model for semantic
web services. In A. Dan and W. Lamersdorf, editors,ICSOC 2006, volume 4294 ofLNCS,
pages 390–401. Springer, 2006.

17. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware
middleware for web services composition.IEEE Transactions on Software Engineering,
30(5):311–327, 2004.

18. C. Zhou, L. Chia, and B. Lee. DAML-QoS ontology for web services. InIEEE International
Conference on Web Services, pages 472–479, 2004.

