Ranking Semantic Web Services Using Rules Evaluation
and Constraint Programming

Jo# Maiia Gar¢a', loan Tomd, David RuiZ, Antonio Ruiz-Corés', Ying Ding?,
and Juan Miguel Gmez*

1 University of Sevilla
E.T.S. Ing. Infornatica, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
{j osenparcia, druiz, aruiz}@is.es
2 Semantics Technology Institute - STI Innsbruck, University of Inaskr
Technikerstrasse 21a, A-6020 Innsbruck, Austria
ioan.toma@ti 2. at
3 Indiana University
Bloomington, IN 47405, USA
di ngyi ng@ ndi ana. edu
4 Carlos Ill University
Madrid, Spain
j uanm guel . gorez@c3m es

Abstract. Current Semantic Web Services discovery and ranking proposals are
based on user preferences descriptions whose expressiveadissited by the
underlying logical formalism used. Thus, highly expressive pref@alescrip-
tions, such as utility functions, cannot be handled by the kind of reasoraeli-
tionally used to perform Semantic Web Services tasks. In this work, we eutlin
hybrid approach to allow the introduction of utility functions in user prefeesn
descriptions, where both rules evaluation and constraint programmeéngsad
to perform the ranking process. Our proposal extends the Web 8eviadel-
ing Ontology with these descriptions, providing a highly expressive fnarie
to specify preferences, and enabling a more general rankinggsoeich can
be performed by different engines.

1 Introduction

Semantic Web Services (SWS) technologies enable the auratian of service re-
lated tasks, such as discovery, ranking, and selectiorarticplar, discovery of services
that fulfill certain user requirements have been widelytedan several proposals, such
as [4, 6,7, 13], among others. These proposals are mostglmsDescription Logics
reasoners, which match service descriptions with userinegents. These discovered
services need to be ranked in order to select the best sexetmding to stated user
preferences.

* This work is partially supported by the European Commission (FEDER Baadish Govern-
ment under CICYT project Web-Factories (TIN2006-00472), byAhdalusian Government
under project ISABEL (TIC-2533), and by the EU FP7 IST projed®&7, SOA4ALL - Ser-
vice Oriented Architectures For All.

Ranking and selection proposals use specific descriptmpetform these tasks.
These descriptions, i.e. user preferences, are based eiumctional properties of ser-
vices, which specify the quality of service preferenceqwispect to parameters that
cannot be considered functional or behavioral, such ag psiecurity, reliability, etc.
Thus, discovered services are ranked and selected depgenditheir non-functional
properties. Although there are several proposals thatiggos semantic framework
to express these properties in a selection scenario, suéh) s 18], preferences can
only be expressed using tendencies or order conditiond)eSpexpressiveness is re-
stricted. Other proposals use utility functions to desenieferences [5, 10], which
provide higher expressiveness and make use of Constraigtafnming (CP) to per-
form the ranking. However, those approaches do not proveengantic framework to
define these utility functions.

Our proposal presents a hybrid architecture to performicemanking integrated
in the Web Service Modeling Ontology (WSMO)[9]. Thus, usezfprences are mod-
eled using the Web Service Modeling Language (WSML)[12]jrgldupport to utility
functions. The proposed architecture integrate a reagosmgine that support rules
evaluation and a CP solver. Our hybrid approach decouplespueferences descrip-
tions with the engines that perform the ranking, and alloWwiyh expressiveness when
describing preferences, by means of utility functions.

The rest of the paper is structured as follows: Section 2egmtsshow services de-
scriptions and user preferences are modeled using utilitgtfons within WSMO and
its language WSML. Then, in Sec. 3 the proposed architectursdrvice ranking is
introduced, describing its components and implementa#qoirements. Related work
is discussed in Sec. 4. Finally, Sec. 5 sums up our contoibwand outlines further
research that should be addressed.

2 Modeling Approach

In this section we briefly introduce our approach for modglwn-functional proper-
ties of services and user preferences. We use WSMO and WSML delmservices
and user requests. We are mainly interested in modelingunactional properties per-
spectives of service providers and service requestorsrasief the section provides
modeling details for both service description (Sec. 2.1 aser requests and prefer-
ences (Sec. 2.2).

2.1 Service Description

In WSML[12], non-functional properties are modeled in a wayikr to which capa-
bilities could be currently modeled in WSML. Non-functionaioperties are defined
using logical expressions same as pre/post-conditiossngstions and effects are be-
ing defined in a capability. The terminology needed to castthe logical expressions
is provided by non-functional properties ontologies (§1f4]).

For exemplification purposes we use the SWS ChalleBtégpment Discovery sce-
nario. We are mainly interested in two aspects of shipmeawices for this particular

5 http://sws-challenge.org/

scenario, namely discounts and obligations. The shipgngces allows requestors to
order a shipment by specifying, sender’s address, recemedress, package informa-
tion and a collection interval during which the shipper witime to collect the package.

Listing 1 displays a concrete example on how to describe onefunctional prop-
erty of a service (i.e. Runner), namely obligations. Duepace limitations the listing
contains only the specification of obligations aspects outhany functional, behav-
ioral or any other non-functional descriptions of the seeviln an informal manner,
the service obligations can be summarized as follows: (tase the package is lost or
damaged Runner’s liability is the declared value of the pgekbut no more than 150$
and (2) packages containing glassware, antiques or jevaedrjyimited to a maximum
declared value of 100$.

Listing 1. Runner’s obligations

(namespace {-"WSRunner.wsml#”,
runner "WSRunner.wsml#", so _"Shipment.wsml#”,
wsml _http://www.wsmo.org/wsml/wsml—syntax/”,
up -"UpperOnto.wsmil#"}

webService runnerService
nonFunctionalProperty obligations
definition
definedBy

/lin case the package is lost or damaged Runners liability is

/lthe declared value of the package but no more than 150 USD

hasPackageLiability(?package, 150):— ?package[so#packageStatus hasValue ?status] and
(?status = so#tpackageDamaged or ?status = so#packagelLost) and
packageDeclaredValue(?package, ?value) and ?value>150.

hasPackageLiability(?package, ?value):— ?package[so#packageStatus hasValue ?status] and
(?status = so#tpackageDamaged or ?status = so#packagelLost) and
packageDeclaredValue(?package, ?value) and ?value =< 150.

/lin case the package is not lost or damaged Runners liability is 0
hasPackageLiability(?package, 0):— ?package[so#packageStatus hasValue ?status] and
?status != so#packageDamaged and ?status != so#packageLost.

/Ipackages containing glassware, antiques or jewelry

/lare limited to a maximum declared value of 100 USD

packageDeclaredValue(?package, 100):—
?package[so#containesltemsOfType hasValue ?type, so#declaredValue hasValue ?value] and
(?type = so#Antiques or ?type = so#Glassware or ?type = so#Jewelry) and ?value >100.

packageDeclaredValue(?package, ?value):—
?package[so#containesltemsOfType hasValue ?type, so#declaredValue hasValue ?value] and
((?type != so#Antiques and ?type != so#Glassware and ?type != so#Jewelry) or ?value<100).

capability runnerOrderSystemCapability
interface runnerOrderSysteminterface
N J

Runner’s obligations are expressed as logical rules in WSSBihilarly other non-
functional properties can be encoded using WSML rules.

2.2 User Preferences

User preferences express how important certain non-fumaitparameters are from the
service user’s point of view. Thus, preferences are takenadncount when perform-
ing ranking tasks. Utility functions are a highly expregsfermalism to describe user

preferences. An utility function is defined as a normaliagtttion (ranging ovelo, 1])
whose domain is a non-functional parameter, giving infdromaabout the preferred
range of values for that non-functional parameter. Figusedws two utility functions
defined as piecewise functions. On the one hand, lower paices are preferred. Thus,
the highest utility value is returned by that function ifgeiis below60 dollars, decreas-
ing that value linearly unti800 dollars, where the utility is at its minimum. On the other
hand, the user prefers higher obligations values, so tligydtinction is modeled as
shown in Fig. 1, varying from the minimum utility valug)(when the liability value is
below50, and growing linearly until liability reaches30, where the utility is maximum

M.

11 1
08 1 08 +

06 1 06 +

Utility
Utility

0,4 - 04 +

0.2 1 02 +

0 + + + y \ g 1 0 . 4 + t
0 60 120 180 240 300 360 0 50 100 150

Price ($) Obligation (liability value)

Fig. 1. Price and obligations utility functions.

In order to express user preferences combining severafurational properties,
each utility function has to be associated with a relativeghie Thus, in a multi-criteria
ranking process, the user preference value that is usedlkosexvices is a weighted
composition of the associated utility function values. fliser preferences definitions
are included as a part of a goal. For instance, from the gcalriigtion shown before,
a user may want to rank services with respect to the utilitycfions for price and
obligations from Fig. 1, with associated weight)df and0.4, respectively.

Listing 2 contains the WSML encoding of the previous presgtnter preferences.
Such preferences are expressed as part of the user reqatestetitall goal, so both
the requested capability and the user preferences ardliEsasing the same formal-
ism. Preferences are encoded as WSML rules which enablamiegsvhich in turn
provides support for service related tasks in which prefege are considered (e.g. dis-
covery, selection, and ranking). As discussed later in Sdmesides the actual reasoning
with WSML rules, a translation of the user preferences exqa@as rules to CP is pro-
vided. This enables the use of utility functions for modglpreferences which provide
high expressiveness.

To model preferences in WSML we defined a binary predibatePr ef er ence
that takes as first argument the identifier of a non-functipnaperty and as second
argument the preferred value of that non-functional prgp&or each interval in the
domain of preference function, a WSML rule is defined. At ron&j namely during

ranking process, one of the rules will fire and the value ofgteference function is
determined.

Listing 2. Goal description with preferences encoded in WSML

(namespace {_"Goall.wsml#",

req -"Goall.wsml#", so -"Shipment.wsml#”,

dc _"http://purl.org/dc/elements/1.1#",

wsml _"http://www.wsmo.org/wsml/wsml—syntax/”,

pref _"http://www.wsmo.org/ontologies/nfp/Preferences.wsmil#”,
up _"http://www.wsmo.org/ontologies/nfp/upperOnto.wsml#"}

goal Goall

nfp
up#order hasValue preft#tascending
up#nfp hasValue {up#hasObligations, up#hasPrice }
up#nfpFunction hasValue {up#hasObligationsFunction, up#hasPriceFunction}
up#instances hasValue req#GumblePackage
up#hasPreference hasValue reg#DefinitionPreference

endnfp

capability requestedCapability
postcondition
definedBy
?order[so#to hasValue Gumble,so#packages hasValue GumblePackage] memberOf so#ShipmentOrder and
Gumble[sotfirstName hasValue "Barney”, so#lastName hasValue "Gumble”,
so#address hasValue GumbleAddress] memberOf so#Contactinfo and
GumbleAddress[so#streetAddress hasValue "320 East 79th Street”,
so#city hasValue so#NY, so#country hasValue so#US] memberOf so#Address.

ontology requestOntology

instance GumblePackage memberOf so#Package
so#length hasValue 10
so#width hasValue 2
so#height hasValue 3
so#weight hasValue 10
so#declaredValue hasValue 150
so#containesltemsOfType hasValue so#Glassware
so#packageStatus hasValue so#packagelost

axiom DefinitionPreferece
definedBy
hasPreference(up#hasObligations, 100): —
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue >= 130.

hasPreference(up#hasObligations, 0):—
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue < 50.

hasPreference(up#hasObligations, ?value):—
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue < 130
and ?hasObligationsValue >= 50 and ?value=(10x«?hasObligationsValue —500)/8.

hasPreference(up#hasPrice, 100): —
upt#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue <= 60.

hasPreference(up#hasPrice, 0):—
up#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue >300.

hasPreference(up#hasPrice, ?value): —
up#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue <= 300
and ?hasPriceValue > 60 and ?value=(3000—10x*?hasPriceValue—500)/24.

axiom DefinitionWeights
definedBy
hasWeights(up#hasObligations, 40).
hasWeights(up#hasPrice, 60).

6
3 A Hybrid Architecturefor Service Ranking

Having modeled the service non-functional properties @i tequests and preferences
as described in Sec.2, we provide in this section a servigddng approach that uses
hybrid descriptions of services and user requests, i.emdic@tion of Logic Program-
ming (LP) Rules and CP. LP Rules expressed as WSML logicalesgmns/axioms
are mainly used to model services descriptions. User régjaad preferences in terms
of non-functional properties are expressed using a cortibmaf LP Rules and CP
formulas, being encoded with the use of the same WSML logigalessions/axioms.
These expressions allow to define different kind of utililpétions.

To handle WSML logical expressions/axioms we use the {R¢é&soner. In fact, any
other reasoner that can handle WSML rules evaluation coulgsbed, e.g. KAON2or
MINS8, provided that it is integrated using the WSML2Reasoner éwork [11]. For
the CP part the Cho€esystem is used. The overall envision architecture is peavid
Fig. 2.

™

Goal

[Access Interface)

.N

Hybrid Service Ranker:

Extractor

Rule2CP
E Service Repository|
& g
Pre
valuator WSML

Fig. 2. Hybrid Architecture for Service Ranking.

As depicted in Fig. 2, the architecture of the hybrid rankéygtem contains a set
of loosely coupled components. The user submits a requesiafized as a WSML

5 http://sourceforge.net/projects/iris-reasoner/

7 http://kaon2.semanticweb.org/

8 http://devl.deri.at/mins/

9 http://choco-solver.net/index.php?title=Mahage

goal through amccess interface component. That request is formalized as presented in
Sec. 2. Moreover, that access interface can be used witffigmetit discovery solutions
(such as UDDI [1] or web service search engines like se€kdarovided that services
are annotated with WSML.

Once submitted into the system the request is processecelBxtiactor compo-
nent. The job of the extractor component is to parse the geguest, and to identify
the requested non-functional properties and their weighésimportance the user gives
to each non-functional property).

For the evaluation of the WSML rules that are used to encodeahefunctional
properties of the services we use the IRIS reasoner. IRI8 éxtensible reasoning en-
gine for expressive rule-based languages that suppodsasdaf un-safe datalog, nega-
tion as failure, function symbols, support for XML data tgpand built-in predicates.
The overall process is based on our previous work describefilb]. In a nutshell
each of the rules corresponding to a non-functional prgpsra service is evaluated,
and the values obtained are normalized. For the goal eiatuat use a CP approach
to evaluate user preferences. More precisely, user prefesethat are formalized as
WSML rules are being translated to CP format using Ruée2CP component. The
translated representation is evaluated using the Chodemgmtation. Choco is a Java
library that allows the modeling of classical constrairttsfaction problems, optimiza-
tion, scheduling and explanation-based CP, programnfigti€uring this evaluation
step the rank values corresponding to each service thatevateated using the IRIS
reasoner are being used in the CP evaluation. Additiorfaligach service, we perform
an aggregation of the weighted non-functional propertsses.

Finally the associated rank values for each service areaeddend the ranked list
of services are provided back to the user. The ordered Ilstiisg constructed by the
Sorter computer. This list can be used as the input for the serviglestion process.

4 Related Work

There are some ranking and selection proposals that ard baggon-functional prop-
erties. Thus, Pathag al. use domain specific ontologies so services are ranked de-
pending on matching degrees and weighted functions [8]il&ily) Zhou et al. rank
services using matching degrees and provide an extensioAKL-S in order to in-
clude quality-of-service profiles [18]. Concerning WSMOetth is also an extension
proposed by Wangt al. that define a ranking model based on a quality matrix, where
user preferences are defined in terms of preferred tendeacgeweights between each
non-functional property [16]. Another WSMO extension, whimur proposal is based
on, is proposed in [15], where a multi-criteria ranking aygmh is presented.

Although not specifically focused on ranking services, [fisents an approach
where service composition is optimized using defined yfilinctions within an Integer
Programming algorithm. Utility functions are also used xpress user preferences in
[10]. In that work, Ruiz-Co#éset al. perform the ranking using CP. This paradigm is
also used in [5], where an ontology of non-functional prdipsris introduced to define

10 http://seekda.com/

them, though user preferences are not semantically defind@] a generic hybrid
architecture to perform discovery, ranking and selectgoroposed, which is extended
in [3] with the inclusion of a first approach to semanticalsdribe user preferences.

5 Conclusionsand Future Work

In this work, a SWS ranking proposal, which is based on semdetcriptions of non-
functional properties and user preferences, is describieelmodeling approach taken
is to model non-functional properties of services as WSMlesuFurthermore, user
preferences and weights are also modeled using rules vgtiars. These descriptions
are processed by a hybrid service ranker, whose archieeiwalso depicted in this
work. Our approach extends WSMO descriptions in order toesguser preferences
with utility functions. Moreover, our hybrid architectuaiows to perform service rank-
ing tasks using different reasoners and CP solvers, deiogupk preferences definition
with actual reasoners used.

As future work, we plan to further develop a prototype of oyloiiid service ranker,
so a full set of test cases can be performed using our rankipgpach. Additionally,
we plan to study and integrate different reasoners and GRrsolcomparing their per-
formance and features. Thus, more complex utility funcibave to be tested within
our proposal, possibly defining a comprehensive catalog@f preferences definitions.

References

1. L. Clement, A. Hately, C. von Riegen, and T. Rogers. UDDI Versién23 Technical report,
OASIS, October 2004.

2. J. M. Garta, D. Ruiz, A. Ruiz-Co#és, O. Marin-Diaz, and M. Resinas. An hybrid, QoS-
aware discovery of semantic web services using constraint programnin B. Kramer,
K.-J. Lin, and P. Narasimhan, editot&SOC 2007, volume 4749 ofLNCS, pages 69-80.
Springer, 2007.

3. J. M. Garta, D. Ruiz, A. Ruiz-Co#s, and M. Resinas. Semantic Discovery and Selection:
A QoS-Aware, Hybrid Model. IiThe 2008 International Conference on Semantic \eb and
Web Services. CSREA Press, 2008.

4. J. Gonalez-Castillo, D. Trastour, and C. Bartolini. Description logics for matdtingaof
services. Technical Report HPL-2001-265, Hewlett Packard, 204Xl .

5. K. Kritikos and D. Plexousakis. Semantic QoS metric matchingE@OWS 2006, pages
265-274. |IEEE Computer Society, 2006.

6. L. Li and I. Horrocks. A software framework for matchmakingséd on semantic web
technology. Innt. World Wde Web Conference, pages 331-339, 2003.

7. C. Lutz and U. Sattler. A proposal for describing services with Dirslnt. Workshop on
Description Logics, 2002.

8. J. Pathak, N. Koul, D. Caragea, and V. G. Honavar. A framedmrkemantic web services
discovery. InWIDM ’05: Proceedings of the 7th annual ACM international workshop on
Web information and data management, pages 45-50, New York, NY, USA, 2005. ACM
Press.

9. D.Roman, H. Lausen, and U. Keller (Ed.). Web service modelinglogy (WSMO). Work-
ing Draft D2v1.4, WSMO, 2007. Available from http://www.wsmo.org/TRIAdL.4/.

10. A. Ruiz-Corés, O. Marn-Diaz, A. Duan-Toro, and M. Toro. Improving the automatic
procurement of web services using constraint programming.J. Cooperative Inf. Syst,
14(4):439-468, 2005.

11. H. Lausen S. Grimm, U. Keller and G. Nagypal. A reasoning fraonkvor rule-based
WSML. In In Proceedings of 4th European Semantic \Web Conference (ESWC) 2007. IEEE
Computer Society, 2007.

12. N. Steinmetz and |. Toma (Ed.). The Web Service Modeling Larguag
WSML. Technical report, WSML, 2008. WSML Working Draft D16.180
http://www.wsmo.org/TR/d16/d16.1/v0.3/.

13. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Awdted discovery, interaction
and composition of semantic web servicds\Web Sem., 1(1):27-46, 2003.

14. I. Toma and D. Foxvog. Non-functional properties in web sesvicelNorking Draft
D28.4v0.1, Digital Enterprise Research Institute (DERI), August620@vailable from
http://www.wsmo.org/TR/d28/d28.4/v0.1/.

15. I. Toma, D. Roman, D. Fensel, B. Sapkota, and J. M. Gomez.|#-ariteria service ranking
approach based on non-functional properties rules evaluation. Km&ner, K.-J. Lin, and
P. Narasimhan, editors2SOC 2007, volume 4749 oL NCS, pages 435-441. Springer, 2007.

16. X. Wang, T. Vitvar, M. Kerrigan, and |. Toma. A QoS-aware sibecmodel for semantic
web services. In A. Dan and W. Lamersdorf, editd@SOC 2006, volume 4294 of. NCS,
pages 390-401. Springer, 2006.

17. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanamd th Chang. QoS-aware
middleware for web services compositionEEE Transactions on Software Engineering,
30(5):311-327, 2004.

18. C. Zhou, L. Chia, and B. Lee. DAML-Qo0S ontology for web sersida|EEE International
Conference on Web Services, pages 472—-479, 2004.

