
5. UPML: The Language and Tool Support for Making the Semantic

Web Alive

B. Omelayenko 1, M. Crubézy 2, D. Fensel 1, R. Benjamins 3, B.

Wielinga 4, E. Motta 5, M. Musen 2, Y. Ding 1

1. Introduction

Originally, the Web grew mainly around representing static

information using the HTML language, which provided a standard

for document layout and was interpreted by browsers in a

canonical way to render documents. On the one hand, it was the

simplicity of HTML that enabled the fast growth of the WWW. On

the other hand, its simplicity seriously hampered more

advanced Web application in many domains and for many tasks.

The Semantic Web [Berners-Lee & Fischetti, 1999] will

transform the current World-Wide Web into a network of

resources structured with the annotations defining their

meaning and relationships. In this context, computers not only

provide more efficient access to Web resources, but are also

able to perform intelligent tasks with those resources. The

explicit representation of the semantics of data, accompanied

with domain theories (i.e. ontologies), will enable a Web that

provides a qualitatively new level of service. It will weave

an incredibly large network of human knowledge and will

complement it with machine processability. Various automated

services will help users to achieve their goals by accessing

203

and providing necessary information in a machine-

understandable form. This process might ultimately create an

extremely knowledgeable system with various specialized

reasoning services — the systems which can support us in many

aspects of life.

Many steps need to be taken to make this vision become

true. Languages and tools for enriching information sources

with machine-processable semantics must be developed (cf.

[Fensel et al., 2001], [Fensel et al., 2000(b)]). Web-based

reasoning services need to be developed, services which employ

these semantic-enriched information sources to provide

intelligent support to human users in task achievement.

Specifically, such services will need to support users not

only in finding and accessing information but also in

achieving their goals based on this information.

The objective of the IBROW 6 project is to develop an

intelligent broker able to configure knowledge systems from

reusable components on the World Wide Web ([Fensel &

Benjamins, 1998], [Benjamins et al., 1999]). IBROW brokers

will handle Web requests for some classes of knowledge systems

(e.g., diagnostic systems) by accessing libraries of reusable

reasoning components on the Web, and selecting, adapting, and

configuring them in accordance with the domain in question.

This project integrates research on heterogeneous databases,

interoperability, and Web technology with knowledge-system

technologies, namely ontologies and problem-solving methods.

204

Nowadays, ontologies [Gruber, 1993] represent mainly

static and declarative knowledge about a domain of expertise.

The way to apply domain knowledge to achieve user tasks, or

dynamic knowledge, is usually encoded in inference algorithms,

which reason on the contents of the domain ontologies. Making

this dynamic knowledge explicit and generic, and regarding it

as an important part of the entire knowledge contained in a

knowledge-based system (KBS) is the rationale which underlies

problem-solving methods (cf. [Stefik, 1995], [Benjamins &

Fensel, 1998], [Benjamins & Shadbolt, 1998], [Motta, 1999],

[Fensel, 2000]).

Problem-solving methods (PSMs) provide reusable components

for implementing the reasoning part of the KBSs. 7 PSMs refine

inference engines to allow a more direct control of the

reasoning process of a system to achieve a task. PSMs encode

control knowledge independently of an application domain: PSMs

can therefore be reused for different domains and

applications. PSMs decompose the reasoning task of a

knowledge-based system in a number of subtasks and inference

actions, which are connected by knowledge roles representing

the ‘role’ that knowledge plays in the reasoning process.

Several libraries of problem-solving methods have been

developed (cf. [Marcus, 1988], [Chandrasekaran et al., 1992],

[Puppe, 1993], [Breuker & van de Velde, 1994], [Benjamins,

1995], [Musen 1998], and [Motta, 1999]) and a number of

problem-solving method specification languages have been

205

proposed, ranging from informal notations (e.g. CML [Schreiber

et al., 1994]) to formal modeling languages (see [Fensel & van

Harmelen, 1994], [Fensel, 1995], [Gomez Perez & Benjamins,

1999] for summaries).

Ontologies and PSMs provide the components which need to

be combined by the IBROW broker to configure a particular

knowledge system on the Web. As a central requirement, both

types of components, ontologies and PSMs, need to be properly

marked-up to be localized on the Web and assembled into a

working system by the broker. In the IBROW project, we have

developed the Unified Problem-solving Method Development

Language UPML8 to specify problem-solving components and their

software architectures to facilitate their semi-automatic

reuse and adaptation (see[Fensel & Benjamins, 1998], [Fensel et

al., 1999(a)] , [Fensel et al., 1999(b)] , [Fensel et al., to

appear]). Concisely, UPML is a framework for specifying

knowledge-intensive reasoning systems based on libraries of

generic problem-solving components. Since its first

definition, UPML has been adopted by the members of the IBROW

consortium and has been used to specify a design library 9

[Motta et al., 1998] at the Open University, a library for

classification problem-solving [Motta & Lu, 2000], and parts

of the PSM library at Stanford University (cf. [Musen 1998]).

The goal of this chapter is to provide an overview of the

UPML framework and tools and to demonstrate how this language

provides the enabling technology for the next level of service

206

of the World-Wide Web: to provide users of the Web with

online, ready-to-use problem-solving resources. In Section 2,

we discuss the mission of IBROW in the context of the future

Web and the central role of a specification language such as

UPML. In Section 3, we introduce the UPML language for

component markup. Tool support for UPML is provided by the

Protégé environment, as presented in Section 4. Concluding

remarks are presented in Section Conclusions.

2. Brokering Reasoning Components on the Web

The mission of the IBROW project is to develop an

intelligent brokering service capable of retrieving a set of

knowledge components from the Web which, combined together,

can solve the users’ problem, according to stated requirements

[Benjamins et al., 1999]. As illustrated in Figure 5.1, the

main goal of the IBROW broker is to identify the components

needed to solve the problem, and to adapt and configure them

into a running reasoning service. In the context of the World-

Wide Web, the task of the broker includes reusing third-party

components available on the Web, and operating problem solvers

and knowledge bases together in a distributed, ‘plug-and-play’

fashion.

207

Figure 5.1 The IBROW approach. Based on user

requirements about a task to be solved, IBROW broker needs to

find, integrate and adapt a set of suitable knowledge

components (i.e., knowledge bases and problem-solving

methods) on the Web to solve a user-specified task. UPML is a

central interoperability element of the IBROW approach.

The IBROW approach offers a number of innovative aspects.

Most of today’s Web brokers (e.g. Metacrawler 10, Ariadne 11,

Ontobroker 12) handle only static information, whereas the IBROW

broker is capable of managing dynamic information 13. As a

result, our approach offers an opportunity for a new type of

electronic marketplaces, where reasoning services can be

configured dynamically out of independent components to solve

a specific task. In particular, IBROW will enable the

construction of ‘throw-away’ applications for Web users.

A key issue in the IBROW approach is that reasoning

components themselves need to be available on the Web.

Moreover, components must be marked-up with machine-

processable data, so that an IBROW broker can identify their

capabilities and reason about them. This requirement calls for

the development of a language for component markup, which must

support the specification of the capabilities and assumptions

of available problem solvers, the goal and assumptions of

tasks, and the properties of domains. In addition, this markup

language must hold non-functional, pragmatics descriptions of

208

available reasoning components. The language must be formal

enough to express characteristics of reasoning components at

the knowledge level, and it should also have a Web-compatible

syntax, to allow the components to be distributed as Web

resources. As explained in Section 3, the first achievement of

the IBROW project was to develop the UPML language, which

matches the requirements for brokering reasoning components on

the Web.

Figure 5.2 The brokering process in IBROW, in which the

UPML markup language plays a central role.

Based on UPML, the IBROW broker can reason about component

annotations to determine the localization of the components

and select appropriate components by matching them to the

users’ requirements. Reasoning capabilities are required from

the broker to recognize and analyze the users’ problem, to

find relevant problem solvers for each (sub)task of the

problem and to check the applicability of problems solvers

according to the knowledge bases available. Once the broker

has selected a suitable set of knowledge components, it needs

to adapt them and enable their integration into a single

service. Finally, the broker needs to execute the configured

running system to solve the users’ task. Figure 5.2 shows a

view of the brokering process: libraries of problem-solving

methods marked-up with UPML and correspond to UPML instances,

209

which are selected by the broker on the basis of their

competence and the users’ task specification. Given the users’

domain model (shown as a ‘Customer KB’ in the figure), the

broker selects the PSMs, which make proper assumptions about

the domain model via special adaptation elements in UPML –

PSM-Domain bridges. Finally, the broker passes the PSMs on a

PSM server able to execute them.

Again, the UPML language for component markup, discussed

in the next section, plays a kernel role at each stage of the

brokering process.

3. UPML: The Language for Knowledge Component

MarkUp

UPML is a software architecture specially designed to

describe knowledge systems. The UPML architecture presented in

Figure 5.3 consists of six different kinds of elements. A task

defines the problem to be solved by the knowledge system. A

problem-solving method defines the reasoning process used to

solve the problem. A domain model defines the domain knowledge

available to solve the problem. Each of these elements is

described independently to enable reuse of: task descriptions

in different domains, problem-solving methods for different

tasks and domains, and domain knowledge for different tasks

and problem-solving methods. Ontologies provide the

terminology used in the tasks, problem-solving methods, and

domain definitions. Again this separation enables knowledge

210

sharing and reuse. For example, different tasks or problem-

solving methods can share parts of the same vocabulary and

definitions. Further elements of the specification are

adapters, which are necessary to adjust other (reusable)

elements to each other and to the specific application

problem. UPML provides two types of adapters: bridges and

refiners. Bridges explicitly model the relationships between

two specific parts of the architecture, e.g. between a domain

and a task or a task and a problem-solving method. Refiners

can be used to express the stepwise adaptation of other

elements of the specification, e.g. generic problem-solving

methods and tasks can be refined to more specific ones by

applying to them a sequence of refiners ([Fensel, 1997],

[Fensel & Motta, to appear]). Again, separating the generic

and specific parts of a reasoning process enhances

reusability. The main distinction between bridges and refiners

is that bridges change the input and output of the components

to make them fit together. Refiners, by contrast, may change

only the internal details, e.g. the subtasks of a problem-

solving method. This provides UPML with a structured and

principled approach for developing and refining heuristic

reasoning components. This approach provides a three-

dimensional design space where different types of adapters

correspond to different types of moves in that space [Fensel,

2000] and [Fensel & Motta, to appear].

211

3.1. Overview of the UPML Framework

UPML relies on a meta-ontology that defines the concepts

and relations which are then instantiated for specific

knowledge components. As shown in Figure 5.4, this ontology is

based on a root class Entity , which defines that each UPML

concept and relation is represented with a list of attributes

of a certain type. The root ontology of UPML defines two basic

classes: concept and binary relation , both of which are

subclasses of the Entity class . All UPML concepts and

relations are subclasses of these two root classes. The

hierarchy of classes used to define UPML is also presented in

Figure 5.4. The main classes of this hierarchy are discussed

in the remainder of this section. The concepts of UPML define

parts of a problem-solving system, as described in Section

3.2. Binary Relations specify the interactions between the

concepts as described in Section 3.3. Architectural

constraints and design guidelines for UPML, which make it a

full-fledged software architecture, are described in [Fensel &

Groenboom, 1999] and [Fensel et al., to appear]. The Web

syntaxes for UPML is discussed in Section 3.4.

Figure 5.3 The UPML architecture.

212

Figure 5.4 Class hierarchy of UPML. Each concept or

relation in the UPML ontology is derived from the root

ontology entities represented by the boxes.

3.2. Concepts

The Library concept is the overarching concept of UPML

architecture: it contains a pointer to each component of a

UPML specification (Figure 5.5). The subclass-of relationship

between two entities is denoted by the symbol <. Each concept

or relation is represented as a list of attribute-type pairs

(attribute : type), where the type is either a primitive type

(STRING), or a class of the hierarchy. The brackets around the

types denote that the corresponding attribute can have

multiple values.

Figure 5.5 The Library concept.

There are four main types of knowledge components in UPML:

Ontology, Domain Model, Task, and PSM (see Figure 5.6). All

types of components are defined as subclasses of the root

concept Knowledge Component , also presented in Figure 5.6.

Each component has a pragmatics description and relies on one

or more ontologies, which define its universe of discourse.

All attributes represented in the figure model part-of

relationship besides uses. 14

213

An Ontology (cf. [Fensel, 2001]) is used in the definition

of tasks , PSMs, and domain models . An ontology provides an

explicit specification of a conceptualization, which can be

reused and shared by multiple reasoning components. It enables

the definition of reusable terminology used by all other

components through a signature, theorems and axioms.

Ontologies are the key instrument of interchange among

knowledge components. The core of an ontology specification in

UPML is its signature definition, which captures the

ontological elements used by a component, or signature

elements . Signature elements are expressed in a certain

modeling language. An ontology also provides axioms which

characterize logical properties of the signature elements .

Additional theorems may list useful statements, which are

implied by the axioms.

The Task concept specifies the task to be achieved by the

PSMs of the library. The input roles and output roles together

with the competence property define the input/output

specification of the task. The input roles specify the input

of case data and the output roles specify the output of case

data. The Competence concept represents the functional

input/output specification of the Task component. Competence

includes preconditions restricting valid inputs and

postconditions which describe the output of a method or task.

The assumptions property of Task contains requirements

214

regarding the knowledge used to define the goal. A Task can

import and refine other tasks via its uses attribute.

The Domain Model concept introduces domain knowledge,

merely the formulas used by the problem-solving methods and

tasks. The Domain Model consists of three elements:

properties , meta-knowledge , and the domain knowledge itself.

Meta-knowledge captures the implicit and explicit assumptions

made in the domain model of the real world. Meta-knowledge is

assumed to be true. In other words, it has not been proven or

cannot be proven, and corresponds to our assumptions about the

domain. Domain knowledge is the knowledge base of the domain

necessary to define the task in a given application domain and

to carry out the inference steps of the selected problem-

solving method. Knowledge is specified under the assumption

that the meta-knowledge is true. Properties (a synonym for

theorems) can be derived from domain knowledge

Figure 5.6 Knowledge Components: Ontology, Domain Model,

Task, and PSM.

The PSM component represents a problem-solving method,

defined by its competence and communication properties. The

input roles and output roles of the PSM specify its inputs and

outputs, similarly to their function in the Task component.

The PSM’s communication property describes its interaction

protocol with its environment in particular with other (PSM)

components.

215

The PSM concept has the following two subclasses: Problem

Decomposer and Reasoning Resource presented in Figure 5.7. A

Problem Decomposer decomposes a task to be solved into a set

of subtasks . Its Operational Description specifies the control

structure over the subtasks and internal data flow among the

subtasks. A Reasoning Resource solves a primitive step (or

subtask) of a problem provided by the problem decomposer . It

specifies assumptions regarding the domain knowledge, which

must be fulfilled in order to perform a primitive reasoning

step. Its internal structure is usually not specified, as it

is considered as an implementational aspect of no interest to

the architectural specification of a problem-solving system.

The knowledge roles attribute specifies the input of the

(domain) knowledge to the reasoning resource.

Figure 5.7 Problem Decomposer and Reasoning Resource.

Considering knowledge components as Web resources

themselves, UPML defines the concept of Pragmatics , which

holds attributes which describe practical and reference

information about a component. Pragmatics attributes are

derived mainly from the Dublin Core 15 metadata recommendation

for annotating Web resources.

UPML does not commit to any logical language to express

formulas about the knowledge components, or to any procedural

language to describe the operational control of a problem

decomposer. In several places, developers can extend UPML with

216

additional concepts to hold the primitives of their languages

of choice.

3.3. Binary Relations

Binary Relations specify the interactions between the UPML

knowledge components. The root binary relation of UPML is

Adapter (Figure 5.8). The Adapter connects two components,

called arguments , through a set of renaming correspondences

between the terms of both arguments. Similar to knowledge

components, an Adapter holds pragmatics information and refers

to specific ontologies . UPML introduces two subclasses of

Adapter : a Bridge and a Refiner shown in Figure 5.9.

Figure 5.8 Adapter.

The Bridge relation connects two Knowledge Components of

different kinds. It defines mapping axioms and additional

assumptions about the components it relates. The Bridge

relation has three subrelations: a PSM-Domain Bridge connects

a PSM with a Domain Model ; a PSM-Task Bridge connects a PSM

and a Task ; and a Task-Domain Bridge connects a Task and a

Domain Model.

Figure 5.9 Bridge and Refiner

The Refiner relation connects two knowledge components of

the same type and so expresses the stepwise adaptation of one

217

component into the other. Very generic problem-solving methods

and tasks can be refined to more specific ones by applying a

sequence of refiners to them. A Refiner assumes that its two

attributes in and out have the same type. This serves to

ensure that the refiner modifies a given component, as opposed

to mapping it to a different kind of component via the Bridge

relation.

Each main UPML component has its own associated type of

refiner. Consequently, the Refiner relation has four

component-specific subrelations: a Domain Refiner , an Ontology

Refiner , a Task Refiner , and a PSM Refiner . The definition of

a refiner includes the attributes specific to each kind of

component. Each refiner has its own restrictions on in -put and

out -put: the Domain Refiner contains redefined properties ,

metaknowledge and knowledge in the refined component.

Similarly, the Ontology Refiner contains refined signature ,

theorems , and axioms . The Task Refiner refines competence and

assumptions , and the PSM Refiner refines communication and

competence .

The separation of generic and specific parts of a

reasoning process maximizes reusability. UPML offers two ways

of combining components of the same type. Both serve a similar

purpose, however they provide complementary means. First, a

component can import another component via the uses attribute.

Hence, the component can make use of definitions imported from

the other component, monotonically refine them, and extend

218

them. In this case, the uses relationship is not modeled by an

explicit entity in the UPML specification but rather via an

attribute of an existing component (the one that imports

another component). This first approach corresponds to a

monotonic extension of a component. Second, a component can be

defined as a refinement of another component via the Refiner

relation. In this case, the former component can rewrite the

aspects of the latter component via the renamings attribute.

Also, in this case we model the uses -relationship by an

explicit entity of the UPML specification (i.e., a Refiner).

This second approach enables non-monotonic modification of a

component via an explicit element of the architecture. As

mentioned earlier, this provides UPML with a structured and

principled approach for developing and configuring heuristic

reasoning components by adapting and refining generic

components (cf. [Fensel, 2000], [Fensel & Motta, to appear]).

3.4. Web Syntaxes

In this section we describe the Web syntaxes for UPML

meta-ontology based on XML and RDF. A Web syntax is crucially

important for UPML because UPML is posed as a standard for

knowledge component markup on the Web. The syntax consists of

three documents: an XML DTD definition for UPML, an XML Schema

definition for UPML, and an RDF Schema definition for UPML as

described in the next section.

219

3.4.1. XML Syntax

XML16 is one of the Web standards which can be used to

describe UPML. XML is a widely supported, domain-independent

language for representing, storing, sharing, and exchanging

data. It provides the means to mark-up the semantics of data,

as well as to validate, and exchange data structures. XML

documents consist of XML tags, which have their names and

associated values. The tags can be nested into one another to

represent the hierarchical structure of a document. This

structure provides a mechanism to impose constraints on the

storage layout and logical structure.

XML Schema17 is a W3C standard aimed to specify the

structure of XML documents. Parts of a document are specified

with a set of data types, either primitive or complex, which

can be inherited from one another. This inheritance of data

structures allows explicit encoding of UPML structures as XML

Schema structures.

Figure 5.10 shows a fragment of XML Schema syntax for the

Knowledge Component concept.

Figure 5.10 Part of the XML Schema defining the XML

representation of the Knowledge Component concept.

A relatively new standard, XML Schema is still not widely

supported by industry. Hence, we also provide a DTD

specification for UPML, part of which is presented in Figure

220

5.11. However, DTDs are only capable of representing the

structure of document instances; they cannot capture the

hierarchy of the UPML structures.

Figure 5.11 Part of the DTD for UPML defining the

Library concept.

Both the full XML Schema and the full DTD for UPML are

available from the UPML website 18.

3.4.2. RDF Syntax

RDF19 is an upcoming standard for representing machine-

processable semantics of on-line information resources. Unlike

XML, which enables serialization of trees, RDF provides

extensive representation of options to perform knowledge-level

markup. The foundation of RDF is a model for representing

named properties and property values. RDF properties may be

thought of as attributes of resources. In this respect, they

correspond to traditional attribute-value pairs used in UPML.

RDF properties also represent relationships between the

resources. The RDF model can therefore resemble an entity-

relation diagram.

The structure of RDF documents is specified with RDF

Schema (RDFS) [Brickley & Guha, 2000]. RDF resources represent

some components and correspond to the Concept class in the

UPML hierarchy. Hence, in the RDF Schema of UPML we define

Entity as a subclass of rdfs:resource , and Concept as a

221

subclass of Entity . We define all other concepts of UPML as

direct or indirect subclasses of the RDF class Concept .

RDF properties are conceptually equivalent to the UPML

Binary Relations . Hence, the latter can be represented as

properties. However, RDF Schema does not allow defining

properties of properties. Accordingly, if we were to define

Binary Relation as a subclass of rdfs:property , then we would

have no way of describing the attributes of binary relations.

Consequently, in the RDF Schema of UPML we defined the Binary

Relation as a subclass of Entity .

As a result, we used RDF classes to define both the

Concepts and the Binary Relations . Each attribute of Concepts

and Binary Relations is defined as a property of the

corresponding class in RDFS. Each property has the

corresponding class as its domain, and the type of this

attribute, as defined in the UPML specification, as its range.

The RDF syntax of UPML is generated from the Protégé-

2000 20 knowledge-acquisition tool, which supports import and

export of ontologies from and to RDF. For example, a sample of

the RDFS specification for the Knowledge Component concept is

shown in Figure 5.12, while the whole specification is

available from the UPML website.

Figure 5.12 A fragment of the RDF Schema for UPML.

The tool for specifying UPML components is discussed in

the next section.

222

4. An Editor for UPML Specifications based on

Protégé-2000

As described in the previous section, the UPML framework

can be seen as an ontology composed of classes and relations

describing reusable knowledge components. Instances of these

classes and relations are particular knowledge components and

adapters (e.g., a classification task and a heuristic

classifier problem decomposer). To enable developers to

specify and annotate libraries of knowledge components, we

created an editor for UPML using Protégé-2000 21. Protégé is an

extensible ontology-editing and knowledge-acquisition

environment assisting users in the construction of large

electronic knowledge bases [Grosso et al., 1999]. Protégé-2000

allows users to create, browse, and edit domain ontologies

using a frame-based representation, compliant with the OKBC

knowledge model [Chaudhri et al., 1998].

In Protégé-2000, an ontology is represented with a

multiple-inheritance hierarchy of the classes of concepts

which are important in a domain. Slots are attached to these

classes and define their attributes. Facets restrict the type

of value that a slot can take. Protégé automatically generates

a graphical knowledge-acquisition tool from the ontology,

which enables application specialists to enter the detailed

content knowledge required to define specific applications

[Puerta et al., 1992]. Protégé allows developers to custom-

223

tailor this knowledge-acquisition tool directly by configuring

graphical entities on forms, which are attached to each class

in the ontology for the acquisition of instances (particular

exemplars of the classes). Consequently, the application

specialists can enter domain information by filling in the

blanks of intuitive forms and by drawing diagrams composed of

selectable icons and connectors. Protégé-2000 is able to store

the knowledge bases in several formats, including RDF [Noy et

al., to appear].

We modeled the set of concepts and relationships of UPML

as a hierarchy of classes in Protégé-2000, with slots and

facets attached to them. Both concepts and binary relations in

UPML are reified as classes in Protégé, so they can have

attributes, and be subclassed.

Figure 5.13 shows most of the hierarchy of the classes we

used to model UPML and the definition of the class Library.

The UPML ontology in Protégé reflects the fact that UPML does

not commit to any logical or procedural language to express

the formulas and programs that define knowledge components and

adapters. By means of the ontology-extension and ontology

inclusion mechanisms of Protégé, developers can extend the

UPML ontology with the primitives necessary to write

expressions in their object language of choice. For example,

we recently used the UPML editor to specify a library of

classification problem solving components [Motta & Lu, 2000].

The components of the library are coded using the logical and

224

operational OCML language [Motta, 1999]. First, we modeled the

OCML set of basic primitives (such as classes, relations,

axioms and functions) themselves as a meta-ontology in

Protégé-2000. We then included this ontology in the UPML

editor (as partially shown in the lower left part of Figure

5.13). From there, we were able to extend (subclass) the UPML

concepts Signature , Signature Element , Formula and Program

with the definitions which refer to the OCML primitives, as

presented in Figure 5.13.

Figure 5.13 A snapshot of the Protégé-based UPML editor:

The ontology of UPML modelled in Protégé as a hierarchy of

classes, extended with OCML-specific classes (left panel) and

the definition of the Library concept, which holds a pointer

to every component in the architecture (right panel).

Given this model of UPML, Protégé-2000 automatically

generated an RDF Schema representation holding the UPML

classes and properties for annotating reasoning resources.

Based on the UPML ontology, Protégé-2000 also generated a

graphical editor for instantiating specific UPML

specifications, e.g., the components of the library for

classification problem-solving. We then custom-tailored this

editor to center the knowledge-acquisition process on the use

of diagrammatic metaphors. In particular, we defined specific

kinds of diagrams to enter the task decomposition (inference

225

structure) of a problem decomposer and the control regime of

its corresponding operational description (control structure).

As shown in Figure 5.14, the UPML editor makes it possible

to browse the list of instances of a selected class and to

view and edit the knowledge-acquisition form associated to the

selected instance. In this figure, the editor displays the

‘heuristic optimal solution classifier’ instance of the

Problem Decomposer class. The knowledge-acquisition form for a

problem decomposer PSM contains a number of user interface

components to enter the values of the slots defined for the

Problem Decomposer class. For example, this form contains a

sub-form specifying the operational description slot of the

PSM (on the right). This sub-form includes an inference

structure diagram, which helps users to specify the competence

slots of the PSM (input roles , output roles and subtasks) by

directly drawing nodes and links in the diagram, which, in

turn, automatically creates and fills in the corresponding

instances of the Signature Element and the Task classes.

Once created, the specification of a set of UPML knowledge

components (instances) can be exported as a corresponding set

of RDF statements, which refer to the RDF Schema of UPML. When

Protégé-2000 generates an RDF specification from an ontology,

it resolves the differences between the knowledge models of

Protégé and RDF Schema by adding specific RDF statements to

express facets such as cardinality constraints on slots, or

multiple domains or ranges for a given slot. Consequently, the

226

resulting RDF code for UPML contains the complete translation

of the UPML ontology; however, some parts of the ontology are

only understandable by Protégé-2000 (see [Noy et al., to

appear] for a discussion).

As a result, the UPML editor in Protégé-2000 provides a

guided framework, which helps developers to define the UPML

specifications and to annotate the knowledge components, which

they want to publish on the Web. Protégé-2000 is extensible

through its API (application programming interface) [Musen et

al., 2000]. We envisage enhancing the UPML editor with

services which will help the users to configure the reasoning

resources and problem decomposers for different domains and

tasks in connection to the IBROW broker. The resulting

configurations of problem solvers will help augment the UPML

specification of the libraries available with the appropriate

bridges and refiner components.

Figure 5.14 A snapshot of the Protégé-based UPML

editor: the ‘heuristic optimal solution classifier’ instance

of the Problem-Decomposer class, with its inference structure

diagram on the right.

Conclusions

UPML defines an architecture for describing heuristic

reasoning components (cf. [Berners-Lee & Fischetti, 1999] for

227

the vision of the latter) for the Semantic Web. UPML is

language-neutral in the sense that different formal languages

can be plugged in to describe the elementary slots defined by

UPML. We already used order-sorted logic [Fensel et al.,

1998], frame logic [Kifer et al., 1995], and OCML [Motta,

1999] successfully for adding formal semantics to UPML

specifications (cf. [Fensel et al., to appear]). We also tried

to use the OIL language [Fensel et al., 2001] which has been

developed within the Ontoknowledge 22 project (cf. [Fensel et

al., 2000(b)]) as a Web-based ontology language. OIL was a

significant source of inspiration for the ontology language

called DAML+OIL 23 developed in a joined EU/US working group on

language standardization, which is currently present as a W3C

working group on the Semantic Web. However in the case of OIL,

the results achieved were somewhat disappointing (cf. [Fensel

et al., 2000(a)]). OIL does not provide an adequate expressive

power for many of the axiomatic parts of UPML specifications.

Extending the expressive power of OIL seems to be absolutely

necessary for making it usable in this context.

In general, UPML is concerned with describing the dynamic

reasoning aspect of the Semantic Web. Therefore, it defines a

new layer on top of the currently developed language standards

for the Semantic Web. This layer provides machine-processable

semantics for the dynamic information sources of the Semantic

Web (see Chapter 1 for relevant discussion).

228

UPML is a description language and does not require

operational semantics. However, the IBROW broker must be able

to reason about the expressions in the description language.

In that sense, one can view the broker as a special-purpose

‘interpreter’ of the language. The current priority in the

IBROW project is to use UPML for annotating large libraries of

problems-solving methods and implementing UPML-based reasoning

services to enable their intelligent brokering on the Web.

Here we can employ many concepts of the component retrieval

area developed for software engineering. The use of formal

techniques for software component retrieval is discussed in

[Jeng & Cheng, 1992], [Jeng & Cheng, 1995], [Penix &

Alexander, 1995], [Chen & Cheng, 1997], [Jiliani et al.,

1997], [Mili, 1997], [Mili et al., 1997], [Schuman & Fischer,

1997], [Penix et al., 1997], and [Zaremski & Wing, 1997].

In many aspects the RETSINA 24 project (cf. [Sycara et al.,

2001]) is similar to IBROW. Although it is focused on multi-

agent systems, this project deals with aspects similar to

those we encounter in IBROW. Heterogeneous agents must be able

to communicate with each other by means of a common language.

The language needs to be coordinated effectively across

distributed networks of information. An agent capability

description language called LARKS (Language for Advertisement

and Request for Knowledge Sharing) has been developed (cf.

[Sycara et al., 2001]) addressing the problem of agent

interoperability. This common language is used by middle or

229

matchmaking agents to pair service-requesting agents with

service-providing agents, which meet the requesting agents'

requirements. The matching engine of the matchmaker agent

contains five different filters for context matching, word

frequency profile comparison, similarity matching, signature

matching, and constraint matching. The user configures these

filters to achieve the desired tradeoff between performance

and matching quality. The main differences between UPML and

LARKS are:

• UPML defines a richer architecture for describing the

reasoning components compared to LARKS.

• UPML is a full-fledged methodological framework for

developing Web-enabled libraries of such components.

• LARKS fixes the language used to describe the competence of

these components, whereas UPML ‘merely’ provides an

architecture in which several languages can be plugged into.

Finally, one has to admit that the actual retrieving

component in RETSINA is far more developed than the current

brokering support in IBROW. This also indicates the main

direction for further development in IBROW. In particular, we

foresee that the scope of the knowledge components to be

brokered in IBROW will need to be broadened from traditional

problem-solving methods to agent-based components capable of

performing reasoning steps autonomously. Both UPML and the

broker will need to take into account these new kinds of

components [Abasolo et al., 2001].

230

During the early phase of the IBROW project, we

demonstrated how our brokering approach based on UPML could be

used for the toy problem of classifying apples for users 25. The

broker used an approach based on Prolog and CORBA to localize,

compose, and integrate the heterogeneous components of the

configured system, such as knowledge bases of the apple domain

and classification problem-solving methods [Benjamins et al.,

1999]. The results of this experiment appeared very promising

and form the foundations for the work that we have planned for

the next phases of the IBROW project. Consequently, we are

expecting even more promising results from this stage, results

that will help to make the vision of the Semantic Web a

reality.

References

[Abasolo et al., 2001] C. Abasolo, J.-L. Arcos, E. Armengol, M. Gómez, J.-M. López-Cobo, M. López-Sánchez,

R. López de Màntaras, E. Plaza, C. van Aart, and B. Wielinga: Libraries for Information Agents, In:

IBROW Project IST-1999-19005: An Intelligent Brokering Service for Knowledge-Component Reuse on

the World-Wide Web, Deliverable 4, 2001.

[Benjamins & Fensel, 1998] V. R. Benjamins and D. Fensel: Special issue on problem-solving methods,

International Journal of Human-Computer Studies, 49(4), 1998.

[Benjamins & Shadbolt, 1998] V. R. Benjamins and N. Shadbolt: Special Issue on Knowledge Acquisition and

Planning, International Journal of Human-Computer Studies, 48(4), 1998.

[Benjamins et al., 1999] V. R. Benjamins, B. Wielinga, J. Wielemaker, and D. Fensel: Brokering Problem-

Solving Knowledge at the Internet. In: D. Fensel et al. (eds.), Knowledge Acquisition, Modeling, and

Management, Proceedings of the European Knowledge Acquisition Workshop (EKAW-99), LNAI 1621,

Springer-Verlag, May, 1999.

231

[Benjamins, 1995] V. R. Benjamins: Problem Solving Methods for Diagnosis And Their Role in Knowledge

Acquisition, International Journal of Expert Systems: Research and Application, 8(2):93-120, 1995.

[Berners-Lee & Fischetti, 1999] T. Berners-Lee and M. Fischetti: Weaving the Web, Harper, San Francisco,

1999.

[Breuker & van de Velde, 1994] J. Breuker and W. van de Velde (eds.): The CommonKADS Library for

Expertise Modeling, IOS Press, Amsterdam, The Netherlands, 1994.

[Brickley & Guha, 2000] D. Brickley and R. Guha: Resource Description Framework (RDF) Schema

Specification 1.0, W3C Candidate Recommendation, March, 2000; available online at

http://www.w3.org/TR/rdf-schema

[Chandrasekaran et al., 1992] B. Chandrasekaran, T. Johnson, and J. Smith: Task Structure Analysis for

Knowledge Modeling, Communications of the ACM, 35(9):124-137, 1992.

[Chaudhri et al., 1998] V. Chaudhri, A. Farquhar, R. Fikes, P. Karp, and J. Rice: OKBC: A programmatic

foundation for knowledge base interoperability. In: Proceedings of the 15th National Conference on

Artificial Intelligence (AAAI-98) and of the 10th Conference on Innovative Applications of Artificial

Intelligence (IAAI-98), AAAI Press, 1998, p. 600–607.

[Chen & Cheng, 1997] Y. Chen and B. Cheng: Facilitating an Automated Approach to Architecture-based

Software Reuse. In Proceedings of the 12th IEEE International Conference on Automated Software

Engineering (ASEC-97), Incline Village, Nevada, November 3-5, 1997.

[Fensel, 1995] D. Fensel: Formal Specification Languages in Knowledge and Software Engineering, The

Knowledge Engineering Review, 10(4), 1995.

[Fensel, 1997] D. Fensel: The Tower-of-Adapter Method for Developing and Reusing Problem-Solving

Methods. In: E. Plaza et al. (eds.), Knowledge Acquisition, Modeling and Management, LNAI 1319,

Springer-Verlag, 1997.

[Fensel, 2000] D. Fensel: Problem-Solving Methods: Understanding, Description, Development, and Reuse,

LNAI 1791, Springer-Verlag, 2000.

[Fensel, 2001] D. Fensel: Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce,

Springer-Verlag, 2001.

232

[Fensel & Benjamins, 1998] D. Fensel and V. Benjamins: Key Issues for Problem-Solving Methods Reuse. In:

Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98), Brighton, UK,

August 23-28, 1998, p. 63-67.

[Fensel & Groenboom,1999] D. Fensel and R. Groenboom: An Architecture for Knowledge-Based Systems,

The Knowledge Engineering Review, 14(3):153-173, 1999.

[Fensel & Motta, to appear] D. Fensel and E. Motta: Structured Development of Problem Solving Methods,

IEEE Transactions on Knowledge and Data Engineering, to appear; available online at

http://www.cs.vu.nl/~dieter/pub.html

[Fensel & van Harmelen, 1994] D. Fensel and F. van Harmelen: A Comparison of Languages which

Operationalize and Formalize KADS Models of Expertise, The Knowledge Engineering Review, 9(2),

1994.

[Fensel et al., 1998] D. Fensel, R. Groenboom, and G. Renardel de Lavalette: Modal Change Logic (MCL):

Specifying the Reasoning of Knowledge-based Systems, Data and Knowledge Engineering, 26(3):243-

269, 1998.

[Fensel et al., 1999(a)] D. Fensel, V. R. Benjamins, S. Decker, M. Gaspari, R. Groenboom, W. Grosso, M.

Musen, E. Plaza, G. Schreiber, R. Studer, and Bob Wielinga: The Unified Problem-Solving Method

Development Language UPML. In: IBROW3 ESPRIT Project 27169: An Intelligent Brokering Service

for Knowledge-Component Reuse on the World-Wide Web, Deliverable 1.1, 1999.

[Fensel et al., 1999(b)] D. Fensel, V. Benjamins, E. Motta, and B. Wielinga: UPML: A Framework for

knowledge system reuse. In: Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI-99), Stockholm, Sweden, July 31 - August 5, 1999.

[Fensel et al., 2000(a)] D. Fensel, M. Crubézy, F. van Harmelen, and I. Horrocks: OIL & UPML: A Unifying

Framework for the Knowledge Web. In Proceedings of the Workshop on Applications of Ontologies and

Problem-solving Methods, 14th European Conference on Artificial Intelligence ECAI’00, Berlin,

Germany August 20-25, 2000.

[Fensel et al., 2000(b)] D. Fensel, F. van Harmelen, H. Akkermans, M. Klein, J. Broekstra, C. Fluyt, J. van der

Meer, H.-P. Schnurr, R. Studer, J. Davies, J. Hughes, U. Krohn, R. Engels, B. Bremdahl, F. Ygge, U.

Reimer, and I. Horrocks: OnToKnowledge: Ontology-based Tools for Knowledge Management. In:

233

Proceedings of the eBusiness and eWork 2000 Conference (EMMSEC2000), Madrid, Spain, October

18-20, 2000.

[Fensel et al., 2001] D. Fensel, I. Horrocks, F. van Harmelen, D. McGuiness, and P. Patel-Schneider: OIL:

Ontology Infrastructure to Enable the Semantic Web, IEEE Intelligent Systems, March/April, 2001.

[Fensel et al., to appear] D. Fensel, E. Motta, V. R. Benjamins, M. Crubézy, S. Decker, M. Gaspari, R.

Groenboom, W. Grosso, F. van Harmelen, M. Musen, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga:

The Unified Problem-solving Method Development Language UPML, to appear in Knowledge and

Informational Systems (KAIS); available online at http://www.cs.vu.nl/~dieter/pub.html

[Gomez Perez & Benjamins, 1999] A. Gomez Perez and V. R. Benjamins: Applications of ontologies and

problem-solving methods. AI Magazine 20(1):119– 122, 1999.

[Grosso et al., 1999] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen: Knowledge

Modeling at the Millennium (The Design and Evolution of Protégé-2000). In: Proceedings of the Twelfth

Workshop on Knowledge Acquisition, Modeling and Management (KAW99), Banff, Alberta, Canada,

October 16-21, 1999.

[Gruber, 1993] T. Gruber: Towards Principles for the Design of Ontologies Used for Knowledge Sharing, In: N.

Guarino and R. Poli (eds.), Formal Ontology in Conceptual Analysis and Knowledge Representation,

Kluwer Academic Publishers, Deventer, The Netherlands, 1993.

[Jeng & Cheng, 1992] J.-J. Jeng and B. H. Cheng: Using Automated Reasoning Techniques to Determine

Software Reuse, International Journal of Software Engineering and Knowledge Engineering, 2(4):523-

546, 1992.

[Jeng & Cheng, 1995] J.-J. Jeng and B. H. Cheng: Specification Matching for Software Reuse: A Foundation. In:

Proceedings of the ACM Symposium on Software Reuse, Seattle, Washington, April, 1995, pp. 97-105.

[Jiliani et al., 1997] L. Jilani, J. Desharnais, M. Frappier, R. Mili, and A. Mili: Retrieving Software Components

That Minimize Adaptation Effort. In: Proceedings of the 12th IEEE International Conference on

Automated Software Engineering (ASEC-97), Incline Village, Nevada, November 3-5, 1997.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and Frame-Based

Languages, Journal of the ACM, 42(4):741-843, 1995.

[Marcus, 1988] S. Marcus (ed.): Automating Knowledge Acquisition for Experts Systems, Kluwer Academic

Publisher, Boston, 1988.

234

[Mili et al., 1997] R Mili, A. Mili, and R. Mittermeir: Storing and Retrieving Software Components: A

Refinement Based System, IEEE Transactions on Software Engineering, 23(7):445-460, 1997.

[Mili, 1997] F. Mili: Transformational Based Problem Solving Reuse. In Proceedings of the 9th International

Conference on Software Engineering & Knowledge Engineering (SEKE-97), Madrid, Spain, June 18-20,

1997.

[Motta & Lu, 2000] E. Motta and W. Lu: A Library of Components for Classification Problem Solving. In:

Proceedings of the2000 Pacific Rim Knowledge Acquisition Workshop, Sydney, Australia, December

11-13, 2000.

[Motta et al., 1998] E. Motta, M. Gaspari, and D. Fensel: UPML Specification of a Parametric Design Library,

In: IBROW3 ESPRIT Project 27169: An Intelligent Brokering Service for Knowledge-Component Reuse

on the World-Wide Web, Deliverable D4.1, 1998.

[Motta, 1999] E. Motta: Reusable Components for Knowledge Modeling, IOS Press, Amsterdam, 1999.

[Musen 1998] M. Musen: Modern Architectures for Intelligent Systems: Reusable Ontologies and Problem-

Solving Methods. In: C.G. Chute(ed.), 1998 AMIA Annual Symposium, Orlando, FL, 1998, p. 46-52.

[Musen et al., 2000] M. Musen, R. Fergerson, W. Grosso, N. Noy, M. Crubezy, and J. Gennari. Component-

Based Support for Building Knowledge-Acquisition Systems. In Proceedings of the Conference on

Intelligent Information Processing (IIP 2000) of the International Federation for Information Processing

World Computer Congress (WCC 2000), Beijing, 2000.

[Noy et al., to appear] N. Noy, M. Sintek, S. Decker, M. Crubézy, R. Fergerson, M. Musen: One Size Does Fit

All: Acquiring Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems, Special issue on

Semantic Web Technology, to appear.

[Omelayenko et al., 2000] B. Omelayenko, M. Crubézy, D. Fensel, Y. Ding, E. Motta, and M. Musen: Meta

Data and UPML, In: IBROW Project IST-1999-19005: An Intelligent Brokering Service for Knowledge-

Component Reuse on the World-Wide Web, Deliverable 5; available online at:http://www.cs.vu.nl/~upml/

[Penix & Alexander, 1995] J. Penix and P. Alexander: Design Representation for Automating Software

Component Reuse. In Proceedings of the First International Workshop on Knowledge-Based Systems for

the (Re)use of Program Libraries, Sophia Antipolis, France, November 23-24, 1995.

235

[Penix et al., 1997] J. Penix, P. Alexander, and K. Havelund: Declarative Specification of Software

Architectures. In Proceedings of the 12th IEEE International Conference on Automated Software

Engineering (ASEC-97), Incline Village, Nevada, November 3-5, 1997.

[Puerta et al., 1992] A. Puerta, J. Egar, S. Tu, and M. Musen: A Multiple-method Knowledge-Acquisition Shell

for the Automatic Generation of Knowledge-acquisition Tools, Knowledge Acquisition, 4(2):171-196,

1992.

[Puppe, 1993] F. Puppe: Systematic Introduction to Expert Systems: Knowledge Representation and Problem-

Solving Methods, Springer-Verlag, Berlin, 1993.

[Schreiber et al., 1994] A. Schreiber, B. Wielinga, J. Akkermans, W. van de Velde, and R. de Hoog:

CommonKADS. A Comprehensive Methodology for KBS Development, IEEE Expert, 9(6):28-37, 1994.

[Schuman & Fischer, 1997] J. Schuman and B. Fischer: NORA/HAMMER: Making Deduction-Based Software

Component Retrieval Practical. In: Proceedings of the 12th IEEE International Conference on Automated

Software Engineering (ASEC-97), Incline Village, Nevada, November 3-5, 1997.

[Shaw & Garlan, 1996] M. Shaw and D. Garlan: Software Architectures. Perspectives on an Emerging

Discipline, Prentice-Hall, 1996.

[Stefik, 1995] M. Stefik: Introduction to Knowledge Systems, Morgan Kaufman Publ., San Francisco, 1995.

[Sycara et al., 2001] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa: The RETSINA MAS

Infrastructure. In: Robotics Institute Technical Report #CMU-RI-TR-01-05, 2001; available online at

http://www.cs.cmu.edu/~softagents/publications.html

[Zaremski & Wing, 1997] A. Zaremski and J. Wing: Specification Matching of Software Components, ACM

Transactions on Software Engineering and Methodology, 6(4):335-369, 1997.

Footnotes

1Vrije Universiteit Amsterdam, Division of Mathematics and Computer Science, De Boelelaan 1081a, 1081 HV

Amsterdam, the Netherlands, {borys, dieter, ying}@cs.vu.nl

2Stanford University, Stanford Medical Informatics, 251 Campus Dr., Suite 215, Stanford, CA 94305-5479,

USA, {crubezy, musen}@smi.stanford.edu

3Intelligent Software Components, S.A., iSOCO Madrid, C. Hernandez de Tejada 7, 1st floor, 28027 Madrid,

Spain, richard@isoco.com

236

4University of Amsterdam, Department of Social Science Informatics (SWI), Roetersstraat 15, 1018 WB

Amsterdam, The Netherlands, bob@swi.psy.uva.nl

5The Open University, Knowledge Media Institute, Walton Hal, lMK7 6AA, Milton Keynes, United Kingdom,

e.motta@open.ac.uk

6http://www.swi.psy.uva.nl/projects/ibrow/home.html

7As such, PSMs are a special type of software architectures ([Shaw & Garlan, 1996]).

8www.cs.vu.nl/~upml/. The recent version is described in [Omelayenko et al.,2000]

9http://webonto.open.ac.uk

10www.metacrawler.com

11www.isi.edu/ariadne

12www.aifb.uni-karlsruhe.de/Projekte/ontobroker/inhalt_en.html

13Note that we distinguish this from automatically generated Web pages, which are called dynamic opposite to

static HTML pages.

14 Uses is a very important attribute that will be explained later on.

15http://dublincore.org/

16www.w3c.org/xml

17www.w3.org/XML/Schema

18www.cs.vu.nl/~upml

19www.w3c.org/rdf

20See the next section for a detail description

21http://protege.stanford.edu/

22www.ontoknowledge.org

23http://www.cs.man.ac.uk/~horrocks/DAML-OIL/

24http://www.cs.cmu.edu/~softagents/retsina.html

25http://www.swi.psy.uva.nl/projects/ibrow/

