
Preface

This book contains the true story of On-To-Knowledge and it's fellows.

Karlsruhe, March 2002 T. Model

Table of Contents

1. On-To-Knowledge: Semantic Web Enabled Knowledge

Management

York Sure, Hans Akkermans, Jeen Broekstra, John Davies, Ying Ding,

Alistair Duke, Robert Engels, Dieter Fensel, Ian Horrocks, Victor Iosif,

Arjohn Kampman, Atanas Kiryakov, Michel Klein, Thorsten Lau,

Damyan Ognyanov, Ulrich Reimer, Kiril Simov, Rudi Studer, Jos van

der Meer, and Frank van Harmelen : 1

1.1 Introduction . 1

1.2 Tool Environment for Ontology-based Knowledge Management 3

1.2.1 RDFferret : Full text searching plus RDF querying 4

1.2.2 OntoShare: Community support . 6

1.2.3 Spectacle: Information presentation 6

1.2.4 OntoEdit: Ontology development 7

1.2.5 Ontology Middleware Module: Integration platform . . . 8

1.2.6 OntoView: Change management for ontologies 9

1.2.7 Sesame: Repository for ontologies and data 11

1.2.8 CORPORUM: Information extraction 12

1.3 OIL: Inference Layer for the Semantic World Wide Web 12

1.3.1 Combining Description Logics with Frame Languages . 13

1.3.2 Web interface . 14

1.3.3 Layering . 14

1.3.4 Current status . 15

1.3.5 Future developments . 15

1.4 Business Applications in Semantic Information Access 16

1.4.1 On-To-Knowledge Methodology . 16

1.4.2 Information Search . 18

1.4.3 Skills Management . 18

1.4.4 Exchanging knowledge in a virtual organization 19

1.5 Conclusions . 20

References . 21

List of Contributors

H.Akkermans

Vrije Universiteit Amsterdam (VU)

Faculty of Sciences

Division of Mathematics and Com-

puter Science

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

J. Broekstra

AIdministrator Nederland BV

Juliaplein 14B

3817CS Amersfoort

The Netherlands

J.Davies

British Telecommunications plc

BT Adastral Park

Martlesham Heath

IP5 3RE Ipswich

United Kingdom

Y.Ding

Vrije Universiteit Amsterdam (VU)

Faculty of Sciences

Division of Mathematics and Com-

puter Science

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

A.Duke

British Telecommunications plc

BT Adastral Park

Martlesham Heath

IP5 3RE Ipswich

United Kingdom

R.Engels

CognIT a.s

Busterudgt 1

N{1754 Halden

Norway

D.Fensel

Vrije Universiteit Amsterdam (VU)

Faculty of Sciences

Division of Mathematics and Com-

puter Science

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

I.Horrocks

Department of Computer Science

University of Manchester

Oxford Road

Manchester

M13 9PL

United Kingdom

V. Iosif

EnerSearch AB

SE 205 09 Malmo

Sweden

A.Kampman

AIdministrator Nederland BV

Juliaplein 14B

3817CS Amersfoort

X List of Contributors

The Netherlands

A.Kiryakov

OntoText Lab.

Sirma AI Ltd.

38A Hristo Botev blvd.

So�a 1000

Bulgaria

M.Klein

Vrije Universiteit Amsterdam (VU)

Faculty of Sciences

Division of Mathematics and Com-

puter Science

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

Th. Lau

Rentenanstalt/Swiss Life

IT Coordination (CC/ITC)

P.O Box

CH-8022

Zurich

Switzerland

D.Ognyanov

OntoText Lab.

Sirma AI Ltd.

38A Hristo Botev blvd.

So�a 1000

Bulgaria

U.Reimer

Rentenanstalt/Swiss Life

IT Coordination (CC/ITC)

P.O Box

CH-8022

Zurich

Switzerland

K.Simov

OntoText Lab.

Sirma AI Ltd.

38A Hristo Botev blvd.

So�a 1000

Bulgaria

R.Studer

Institute AIFB

University of Karlsruhe

Postfach

76128 Karlsruhe

Germany

Y.Sure

Institute AIFB

University of Karlsruhe

Postfach

76128 Karlsruhe

Germany

J. van der Meer

AIdministrator Nederland BV

Juliaplein 14B

3817CS Amersfoort

The Netherlands

F. van Harmelen

Vrije Universiteit Amsterdam (VU)

Faculty of Sciences

Division of Mathematics and Com-

puter Science

De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

1. On-To-Knowledge: Semantic Web Enabled

Knowledge Management

York Sure1, Hans Akkermans6, Jeen Broekstra2, John Davies3, Ying

Ding6, Alistair Duke3, Robert Engels4, Dieter Fensel6, Ian Horrocks9,

Victor Iosif5, Arjohn Kampman2, Atanas Kiryakov7, Michel Klein6,

Thorsten Lau8, Damyan Ognyanov7, Ulrich Reimer8, Kiril Simov7, Rudi

Studer1, Jos van der Meer2, and Frank van Harmelen6

1 Institute AIFB, University of Karlsruhe
Postfach, 76128 Karlsruhe, Germany
Contact: sure@aifb.uni-karlsruhe.de
Project website: http://www.ontoknowledge.org

2 AIdministrator, Amersfoort, The Netherlands
3 BT, Ipswich, UK
4 CognIT, Oslo, Norway
5 EnerSearch AB, Gothenburg, Sweden
6 Free University Amsterdam, Amsterdam, The Netherlands
7 OntoText, So�a, Bulgaria
8 Swiss Life, Zurich, Switzerland
9 University of Manchester, Manchester, UK

On-To-Knowledge builds an ontology-based tool environment to speed up

knowledge management, dealing with large numbers of heterogeneous, dis-

tributed, and semi-structured documents typically found in large company

intranets and the World Wide Web. The project's target results are: (i) a

toolset for semantic information processing and user access; (ii) OIL, an

ontology-based inference layer on top of the World Wide Web; (iii) an as-

sociated methodology and validation by industrial case studies. This chapter

o�ers an overview of the On-To-Knowledge approach to knowledge manage-

ment.

1.1 Introduction

The World Wide Web (WWW) has drastically changed the availability of

electronically available information. Currently, there are around one billion

documents in the WWW, which are used by more than 300 million users

internationally. And that number is growing fast. However, this success and

exponential growth makes it increasingly diÆcult to �nd, to access, to present,

and to maintain the information required by a wide variety of users. Docu-

ment management systems now on the market have severe weaknesses:

{ Searching information: Existing keyword-based searches can retrieve irrel-

evant information that includes certain terms in di�erent meanings. They

also miss information when di�erent terms with the same meaning about

the desired content are used.

2 York Sure et al.

{ Extracting information: Currently, human browsing and reading is required

to extract relevant information from information sources. This is because

automatic agents do not possess the common sense knowledge required

to extract such information from textual representations, and they fail to

integrate information distributed over di�erent sources.

{ Maintaining weakly structured text sources is a diÆcult and time-consuming

activity when such sources become large. Keeping such collections consis-

tent, correct, and up-to-date requires mechanized representations of se-

mantics that help to detect anomalies.

{ Automatic document generation would enable adaptive websites that are

dynamically recon�gured according to user pro�les or other aspects of

relevance. Generation of semi-structured information presentations from

semi-structured data requires a machine-accessible representation of the

semantics of these information sources.

However, the competitiveness of many companies depends heavily on how

they exploit their corporate knowledge and memory. Most information in

modern electronic media is mixed media and rather weakly structured. This

is not only true of the Internet but also of large company intranets. Finding

and maintaining information is a tricky problem in weakly structured repre-

sentation media. Increasingly, companies have realized that their intranets are

valuable repositories of corporate knowledge. But as volumes of information

continue to increase rapidly, the task of turning them into useful knowledge

has become a major problem. Tim Berners-Lee envisioned a Semantic Web

(cf. [1.1] [1.2]) that provides automated information access based on machine-

processable semantics of data and heuristics that use these meta data. The

explicit representation of the semantics of data, accompanied with domain

theories (i.e., ontologies), will enable a web that provides a qualitatively new

level of service. It will weave together an incredibly large network of human

knowledge and will complement it with machine processability. Various au-

tomated services will help the user achieve goals by accessing and providing

information in machine-understandable form. This process may ultimately

create extremely knowledgeable systems with various specialized reasoning

services systems that can support us in nearly all aspects of life and that will

become as necessary to us as access to electric power.

Ontologies (cf. [1.3]) are key enabling technology for the semantic web.

They need to interweave human understanding of symbols with their ma-

chine processability. This clearly warrants a closer look at the nature of on-

tologies and at the question of whether they can actually provide such a

service, and if so, how. Ontologies were developed in arti�cial intelligence to

facilitate knowledge sharing and re-use. Since the early nineties, ontologies

have become a popular research topic. They have been studied by several

arti�cial intelligence research communities, including knowledge engineering,

natural-language processing and knowledge representation. More recently, the

concept of ontology is also gaining tremendous ground in �elds, such as intel-

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 3

ligent information integration, cooperative information systems, information

retrieval, electronic commerce, and knowledge management. The reason on-

tologies are becoming so popular is largely due to what they promise: a shared

and common understanding of a domain that can be communicated between

people and application systems (cf. [1.4]).

The EU IST-1999-10132 project On-To-Knowledge1 develops methods

and tools to employ the full power of the ontological approach for facili-

tating knowledge management. The On-To-Knowledge tools will help knowl-

edge workers to access company-wide information repositories in an eÆcient,

natural and intuitive way.

The contents of this chapter are structured as follows. Section 1.2 begins

with a description of the tool environment we developed in On-To-Knowledge

to facilitate semantic web technology for information access and knowledge

management. Section 1.3 goes on to examine the Ontology Inference Layer

(OIL), which de�nes a
exible framework for de�ning ontology languages in

the semantic web. Working in cooperation with our American colleagues at

DAML2, we de�ned the DAML+OIL language that has now been submitted

as a web standard at W3C3, the standardization committee for the World

Wide Web. Section 1.4 discusses the methodological framework for our tool

environment and its application in several industrial case studies, including

large organizational memories and knowledge management in virtual enter-

prises. Finally, Section 1.5 presents our conclusions and general outlook.

1.2 Tool Environment for Ontology-based Knowledge

Management

A key deliverable of the On-To-Knowledge project is the resulting software

toolset. Several consortium partners are participating in the e�ort to realize

in software the underpinning ideas and theoretical foundations of the project.

A major objective of the project is to create intelligent software to support

users in both accessing information and in the maintenance, conversion, and

acquisition of information sources. These tools are based on a three-layered

architecture. Most of the tools presented in Figure 1.1 are described below.

As a minimum requirement all tools support OIL core that has been designed

to be exactly the part of OIL that coincides with RDF(S)4 (cf. Section 1.3

for a detailed description).

1 http://www.ontoknowledge.org
2 http://www.daml.org
3 http://www.w3c.org
4 cf. http://www.w3.org/TR/REC-rdf-syntax/ and http://www.w3.org/TR/rdf-
schema/

4 York Sure et al.

Fig. 1.1. The technical architecture of On-To-Knowledge

1.2.1 RDFferret: Full text searching plus RDF querying

RDFferret combines full text searching with RDF querying. This combined

approach seems to be very promising due to the fact that RDF-annotated

information resources are likely to be complemented by non-annotated infor-

mation for a considerable period to come, and that any given RDF description

of a set of resources will give one particular perspective on the information

described. RDFferret can be used like a conventional Internet search engine

by entering a set of search terms or a natural language query and produces a

list of links to relevant Web pages in the usual way. However, RDFferret 's in-

dexing and retrieval technique is also designed to use domain knowledge that

is made available in the form of ontologies speci�ed as RDF Schemas. RDF

resources are Web pages or (parts thereof) and such pages or segments are

e�ectively ontological instances. Correspondingly, resource types are ontologi-

cal classes. The information items processed by RDFferret are RDF resources,

which may be Web pages or parts thereof. During indexing RDFferret assigns

content descriptors to RDF resources. Content descriptors of a resource are

terms (words and phrases) that RDFferret obtains from a full text analysis

of the resource content and from processing all literal values that are directly

related by a property. They also retain structural information about the on-

tology. In RDFferret the user can select from a list of all the resource types

stored in the index. When searching by selecting a resource type, RDFferret

adjusts its result list to show only resources of the selected type. The user

is also presented with a search and navigation area. The search area shows

the attributes of the selected resource type. For each attribute the user can

input a search criterion. RDFferret combines the search criteria entered and

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 5

matches the resulting query against its ontology-based index. In addition,

resource types (ontological classes) related by some property to the currently

selected type are displayed as hyperlinks. Clicking on such a type then selects

that type and in turn displays those types that are related to it. Thus the

user can browse the ontology in a natural and intuitive way.

Figure 1.2 shows a typical initial query by a user. The user has entered

a free text query for information about an employee called \George Miller".

The search engine has returned a ranked list of 73 documents mentioning the

terms \George" and/or \Miller". At the top of the screenshot can be seen

a drop-down list containing the selection \any...". When returning the 73

results documents, RDFferret has also compiled a list of the classes to which

each document belongs. This class list is then made available to the user via

the drop-down list referred to.

Fig. 1.2. The query interface of RDFferret

6 York Sure et al.

1.2.2 OntoShare: Community support

OntoShare enables the storage of best practice information according to an

ontology and the automatic dissemination of new best practice information

to relevant co-workers. It also allows users to browse or search the ontology

in order to �nd the most relevant information to the problem that they are

dealing with at any given time. The ontology helps new users to navigate

and acts as a store for key learning and best practices accumulated through

experience. In addition, the ontology helps users to become familiar with

new domains. It provides a sharable structure for the knowledge base, and

a common language for communication between user groups. Each user can

de�ne his own relevant parts of the ontology (i.e. personal concepts) that are

integrated into a single coherent ontology available to all users (cf. Figure 1.3).

Fig. 1.3. Community of knowledge sharing

1.2.3 Spectacle: Information presentation

Spectacle organizes the presentation of information. This presentation is on-

tology driven. Ontological information, such as classes or speci�c attributes

of information, is used to generate exploration contexts for users. An explo-

ration context makes it easier for users to explore a domain. The context is

related to certain tasks, such as �nding information or buying products. The

context consists of three modules:

{ Content: speci�c content needed to perform a task

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 7

{ Navigation: suitable navigation disclosing the information

{ Design: applicable design displaying the selected content

The modules are independent. For instance, the same content can be ex-

plored with di�erent navigation modules. In order to address di�erent target

audiences, di�erent exploration contexts are generated. In this process, it is

important that the modules remain autonomous entities that can be re-used.

The content selected comes from sources distributed in { and outside { an

organization. Navigation is based on business and organizational decisions.

It provides a route through the content presented. Navigation will di�er per

user and user group. The design controls the look and feel of the exploration

context, including the user interaction. Spectacle consists of the following

parts: (i) the Spectacle server, which handles all interaction between users

and exploration contexts, (ii) Libraries for creating large scale exploration

contexts in a spectacle server and (iii) a graphical user interface for building

small-scale exploration contexts.

1.2.4 OntoEdit: Ontology development

OntoEdit [1.5] is a collaborative ontology engineering environment that is

easily expandable through a
exible plug-in framework. OntoEdit supports

ontology engineers while inspecting, browsing, codifying and modifying on-

tologies in each step of the ontology development process (cf. Figure 1.9).

Modeling ontologies using OntoEdit involves modeling at a conceptual level,

viz. (i) as independently of a concrete representation language as possible, and

(ii) using GUI's representing views on conceptual structures (concepts, con-

cept hierarchy, relations, axioms) rather than codifying conceptual structures

in ASCII. In addition, OntoEdit provides a simple instance editor to insert

facts according to a modeled ontology. The conceptual model of an ontology is

stored internally using a powerful ontology model, which can be mapped onto

di�erent, concrete representation languages (e.g. DAML+OIL or RDF(S)).

Ontologies can be directly imported from and exported to Sesame. Figure 1.4

shows an example from the Swiss Life case study described in Section 1.4.

Collaboration is supported on di�erent levels. Firstly, to facilitate the

collaboration between domain experts and ontology engineers we developed

several plug-ins (the plug-in framework is described in [1.6]) for OntoEdit that

extend it's functionalities, e.g. OntoKick and Mind2Onto. OntoKick targets

at (i) creation of the requirement speci�cation document for ontologies and

(ii) extraction of relevant structures for the building of a semi-formal on-

tology description. Mind2Onto targets at the integration of brainstorming

processes to build relevant structures of the semi-formal ontology descrip-

tion. Secondly, to support the distributed development of ontologies we im-

plemented a transaction management based on a client/server architecture

in which the OntoEdit clients connect to an ontology server and can change

or extend the ontology. All clients are immediately informed of modi�cations

8 York Sure et al.

Fig. 1.4. Ontology development with OntoEdit

the other ontologists do to the ontology. Engineers can store comments (e.g.

explaining design decisions) in a documentation �eld for each concept and

relation. By this way, one of the main features of ontologies, i.e. their con-

sensual character, is supported. Collaborating ontologists must agree on the

modeling decisions that are made. Therefore the possibility to monitor the

development process of all collaborators is essential for reaching the goal of

a shared ontology. We refer to [1.5] for a detailed description of both the

plug-ins and the support for distributed ontology development.

1.2.5 Ontology Middleware Module: Integration platform

The Ontology Middleware Module (OMM) can be seen as \adminis-

trative" software infrastructure that makes the knowledge management tools

easier for integration in real-world applications. The major features supported

are:

{ Change management for ontologies allows work with, revert to, extraction,

and branching of di�erent states and versions, cf. the next subsection on

OntoView;

{ Access control (security) system with support for role hierarchies including

comprehensive and precise restrictions (down to object/record-level) that

enable business-logic enforcement;

{ Meta-information for ontologies, speci�c resources (classes, instances), and

statements.

These three aspects are tightly integrated to provide the same level of the

handling of knowledge in the process of its development and maintenance as

source control systems (such as e.g. the Concurrent Versions System (CVS)5)

5 http://www.cvshome.org/

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 9

Fig. 1.5. Features of the Ontology Middleware Module

provide for software. On the other hand, for end-user applications, OMM can

be seen as equivalent to the database security, change tracking and auditing

systems. Our OMM is carefully designed to support both use cases.

The ontology middleware serves as a
exible and expandable platform for

knowledge management. It extends the storage and query abilities of Sesame

and puts an additional multi-protocol access on top of it (e.g. HTTP, RMI,

SOAP).

1.2.6 OntoView: Change management for ontologies

OntoView [1.7] is a change management tool for ontologies and is part of the

Ontology Middleware Module. Change management is especially important

when ontologies will be used in a decentralised and uncontrolled environment

like the web, where changes occur without co-ordination. The main function

of OntoView is to provide a transparent interface to arbitrary versions of

ontologies. To achieve this, it maintains an internal speci�cation of the rela-

tion between the di�erent variants of ontologies. This speci�cation consists of

three aspects: (i) the meta-data about changes (author, date, time etc), (ii)

the conceptual relations between versions of de�nitions in the ontologies, and

(iii) the transformations between them. This speci�cation is partly derived

from the versions of ontologies themselves, but also uses additional human

input about the meta-data and the conceptual e�ects of changes.

To help the user to specify this information, OntoView provides the utility

to compare versions of ontologies and highlight the di�erences. This helps in

�nding changes in ontologies, even if those have occurred in an uncontrolled

way, i.e., possibly by di�erent people in an unknown order. The comparison

function is inspired by UNIX diff, but the implementation is quite di�erent.

Standard diff compares �le version at line-level, highlighting the lines that

textually di�er in two versions. OntoView, in contrast, compares version of

10 York Sure et al.

ontologies at a structural level, showing which de�nitions of ontological con-

cepts or properties are changed.

There are di�erent types of change. Each type is highlighted in a di�erent

colour, and the actually changed lines are printed in boldface. An example of

the visual representation of the result of a comparison is shown in Figure 1.6.

Fig. 1.6. The result of a comparison of two ontologies with OntoView

The comparison function distinguishes between the following types of

change:

{ Non-logical change, e.g. in a natural language description. This are changes

in the label of an concept or property, or in comment inside de�nitions.

{ Logical de�nition change. This is a change in the de�nition of a concept

that a�ects its formal semantics. Examples of such changes are alterations

of subclass statements, or changes in the domain or range of properties.

Additions or deletions of local property restriction in a class are also logical

changes. The second and third change in the Figure 1.6 (class \Male" and

property \hasParent") are examples of such changes.

{ Identi�er change. This is the case when a concept or property is given a

new identi�er, i.e. a renaming.

{ Addition of de�nitions.

{ Deletion of de�nitions.

The comparison function also allows the user to specify the conceptual

implication of the changes. For the �rst three types of changes, the user

is given the option to label them either as \identical" (i.e., although the

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 11

speci�cation is changes, it still refers to the same concept), or as \concep-

tual change". In the latter case, the user can specify the conceptual relation

between the two version of the concept. For example, by stating that the

property \hasParent1:0" is a sub-property of \hasParent2:0".

Another function is the possibility to analysis e�ects of changes. Changes

in ontologies do not only a�ect the data and applications that use them, but

they can also have unintended, unexpected and unforeseeable consequences

in the ontology itself [1.8]. The system provides some basic support for the

analysis of these e�ects. First, on request it can also highlight the places in

the ontology where conceptually changed concepts or properties are used. For

example, if a property \hasChild" is changed, it will highlight the de�nition

of the class \Mother", which uses the property \hasChild". This function can

also exploit the transitivity of properties to show the propagation of possible

changes through the ontology. A foreseen second e�ect analysis feature is a

connection to FaCT (cf. [1.9]), which allows to check the formal consistency

of the suggested conceptual relations between di�erent versions of de�nitions.

1.2.7 Sesame: Repository for ontologies and data

Sesame [1.10] is a system that allows persistent storage of RDF data and

schema information and subsequent online querying of that information.

Sesame has been designed with scalability, portability and extensibility in

mind. Sesame itself has been implemented in Java, which makes it portable

to almost any platform. It also abstracts from the actual repository used by

means of a standardized API. This API makes Sesame portable to any repos-

itory (DBMS or otherwise) that is able to store RDF triples. Currently, only

implementations based on DBMS's exist. At the same time, this API enables

swift addition of new modules that operate on RDF and RDF Schema data.

One of the most prominent modules of Sesame is its query engine. This query

engine supports an OQL-style query language called RQL (cf. [1.11]). RQL

supports querying of both RDF data (e.g. instances) and schema information

(e.g. class hierarchies, domains and ranges of properties). RQL also supports

path-expressions through RDF graphs, and can combine data and schema

information in one query. The streaming approach used in Sesame (data

is processed as soon as available) makes for a minimal memory footprint.

This streaming approach also makes it possible for Sesame to scale to huge

amounts of data. In short, Sesame can scale from devices as small as palm-

top computers to powerful enterprise servers. A �nal feature of Sesame is its

exibility in communicating with other tools. Currently, Sesame itself only

supports communication over HTTP, support for other protocols is added

through the Ontology Middleware Module on top of it.

12 York Sure et al.

1.2.8 CORPORUM: Information extraction

The CORPORUM toolset [1.12] consists of two parts, viz. OntoExtract

and OntoWrapper, and has two related, though di�erent, tasks: interpreta-

tion of natural language texts and extraction of speci�c information from

free text. Whereas the former process can be performed autonomously by

CORPORUM tools, the latter task requires a user who de�nes business

rules for extracting information from tables, (phone) directories, home-pages,

etc. Although this task is not without its challenges, most e�ort focuses

on the former task, which involves natural language interpretation on a

syntactic and lexical level, as well as interpretation of the results of that

level (discourse analysis, co-reference and collocation analysis, etc.). The

CORPORUM system outputs a variety of (symbolic) knowledge represen-

tations, including semantic (network) structures and visualizations thereof,

light-weight ontologies, text summaries, automatically generated thesauri (re-

lated words/concepts), etc. Thus, extracted information is represented in

RDF(S)/DAML+OIL, augmented with Dublin Core Meta Data wherever

possible, and submitted to the Sesame data repository mentioned previously.

Typically, the CORPORUM system does not incorporate background

knowledge itself, but relies on its extraction and analysis capabilities in com-

bination with any knowledge available in the Sesame repository. The avail-

ability of knowledge, however, is not a prerequisite.

1.3 OIL: Inference Layer for the Semantic World Wide

Web

In the introduction, ontologies were identi�ed as a key technology for making

progress in the tasks outlined there: searching, extracting and maintaining

information in a weakly-structured environments such as company intranets,

or even in an open environment like the WWW.

The tools discussed in Section 1.2 all exploited ontologies as their common

operating ground: an ontology was created manually (OntoEdit) or extracted

semi-automatically (OntoExtract), raw information source were structured

on the basis of an ontology (OntoWrapper), this structured data was stored

in an ontology-based repository (Sesame), and the data could be queried

using the vocabulary from an ontology. Finally, information could be shared

(OntoShare), searched (RDFferret) or browsed (Spectacle) by users on the

basis of such ontological vocabularies.

All of this of course requires the existence of a language to express such

ontologies. Some basic requirements for such a language are:

{ suÆcient expressivity for the applications and tasks mentioned in the pre-

ceding sections

{ suÆciently formalized to allow machine processing

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 13

{ integrated with existing Web technologies and standards

Although much work has been done on ontology languages in the AI

community (see e.g. [1.13] for a recent overview), it is particularly the 3rd

requirement that motivated us to design a new language (baptised OIL) for

our purposes. In this section, we will brie
y describe the constructions in

the OIL language, and then discuss its most important features and design

decisions.

1.3.1 Combining Description Logics with Frame Languages

The OIL language (cf. [1.14], [1.15], and [1.16]) is to designed to combine

frame-like modeling primitives with the increased (in some respects) expres-

sive power, formal rigor and automated reasoning services of an expressive

description logic. OIL also comes \web enabled" by having both XML and

RDFS based serializations (as well as a formally speci�ed \human readable"

form, which we will use here6). The frame structure of OIL is based on XOL

[1.17], an XML serialization of the OKBC-lite knowledge model [1.18]. In

these languages classes (concepts) are described by frames, which consist of a

list of super-classes and a list of slot-�ller pairs. A slot corresponds to a role

in a DL, and a slot-�ller pair corresponds to either a universal value restric-

tion or an existential quanti�cation. OIL extends this basic frame syntax so

that it can capture the full power of an expressive description logic. These

extensions include:

{ Arbitrary boolean combinations of classes (called class expressions) can

be formed, and used anywhere that a class name can be used. In partic-

ular, class expressions can be used as slot �llers, whereas in typical frame

languages slot �llers are restricted to being class (or individual) names.

{ A slot-�ller pair (called a slot constraint) can itself be treated as a class: it

can be used anywhere that a class name can be used, and can be combined

with other classes in class expressions.

{ Class de�nitions (frames) have an (optional) additional �eld that speci�es

whether the class de�nition is primitive (a subsumption axiom) or non-

primitive (an equivalence axiom). If omitted, this defaults to primitive.

{ Di�erent types of slot constraint are provided, specifying universal value

restrictions, existential quanti�cation and various kinds of cardinality con-

straint.

{ Global slot de�nitions are extended to allow the speci�cation of superslots

(subsuming slots) and of properties such as transitivity, and symmetry.

{ Unlike many frame languages, there is no restriction on the ordering of

class and slot de�nitions, so classes and slots can be used before they are

de�ned.

6 http://www.ontoknowledge.org/oil/syntax/

14 York Sure et al.

{ OIL also provides axioms for asserting disjointness, equivalence and cover-

ings with respect to class expressions.

Many of these points are standard for a description logic, but are novel for

a frame language. OIL is also more restrictive than typical frame languages

in some respects. In particular, it does not support collection types other

than sets (e.g., lists or bags), and it does not support the speci�cation of

default �llers. These restrictions are necessary in order to maintain the formal

properties of the language (e.g., monotonicity) and the correspondence with

description logics.

1.3.2 Web interface

As part of the Semantic Web activity of the W3C, a very simple web-based

ontology language had already been de�ned, namely RDF Schema. This lan-

guage only provides facilities to de�ne class- and property-names, inclusion

axioms for both classes and properties (subclasses and subproperties), and to

de�ne domain and range constraints on properties. Instances of such classes

and properties are de�ned in RDF.

OIL has been designed to be a superset of the constructions in RDF

Schema: all valid RDF Schema expressions are also valid OIL expressions.

Furthermore, the syntax of OIL has been designed such that any valid OIL

document is also a valid RDF(S) document when all the elements from the

OIL-namespace are ignored. The RDF Schema interpretation of the result-

ing subdocument is guaranteed to be sound (but of course incomplete) with

respect to the interpretation of the full OIL document.

This guarantees that any RDF Schema agent can correctly process arbi-

trary OIL documents, and still correctly capture some of the intended mean-

ing. The full details of how this has been achieved, and the trade-o�s involved

in this can be found in [1.19].

1.3.3 Layering

For many of the applications from section 1, it is unlikely that a single lan-

guage will be ideally suited for all uses and all users. In order to allow users

to choose the expressive power appropriate to their application, and to allow

for future extensions, a layered family of OIL languages has been described.

The sublanguage OIL Core has been de�ned to be exactly the part of OIL

that coincides with RDF(S). This amounts to full RDF(S), without some of

RDF's more dubious constructions: containers and rei�cation.

The standard language, is called \Standard OIL", and when extended

with the ability to assert that individuals and tuples are, respectively, in-

stances of classes and slots), is called \Instance OIL". Finally, \Heavy OIL"

is the name given to a further layer that will include as yet unspeci�ed lan-

guage extensions. This layering is depicted in Figure 1.7.

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 15

Fig. 1.7. The layered language model of OIL

Figure 1.8 illustrates an OIL ontology (using the human readable serial-

ization), developed in a skills management case study by Swiss Life.

The following points are noteworthy:

{ Skills are restricted to being of a single level trough a cardinality con-

straint

{ WorksInProject and ProjectMembers are de�ned to be each others inverse

{ ITProjects are de�ned to be exactly those projects whose ResponsibleDept

is the ITDept

{ DeskTopPublishing is de�ned to be in the intersection of Publishing and

DocumentProcessing

1.3.4 Current status

Meanwhile, OIL has been adopted by a joined EU/US initiative that devel-

oped a language called DAML+OIL7, which has now been submitted to the

Web Ontology Group of the W3C8, the standardization committee of the

WWW. We can soon expect a recommendation for a web ontology language;

hopefully, it will feature many of the elements and aspects on which OIL is

based.

1.3.5 Future developments

In November 2001, the W3C started a Working Group for de�ning a Web

Ontology language. This WG is chartered to take DAML+OIL as its start-

ing point. Over 40 of the W3C members from academia and industry are

currently participating in this e�ort. It is most likely that such a Web Ontol-

ogy language will range in power somewhere between the rather simple RDF

Schema and the rather rich Standard OIL language.

7 http://www.daml.org/2001/03/daml+oil-index
8 http://www.w3.org/2001/sw/WebOnt/

16 York Sure et al.

Fig. 1.8. OIL illustration

Other e�orts are underway to de�ne extensions for the ontology language,

such as an ontology-query language, or an extension with rules (which would

allow for example role chaining, as done in Horn logic).

1.4 Business Applications in Semantic Information

Access

Tool development in On-To-Knowledge was strongly driven by several case

studies. Some of them started in the earliest stages of the project so that

the project was geared towards practical demands from the very beginning.

The case studies also serve as a means to evaluate the project results. In

addition, a methodology for employing ontology-based tools for knowledge

management was developed and tested together with the case studies.

1.4.1 On-To-Knowledge Methodology

The On-To-Knowledge case studies explore a broad bandwidth of knowledge

management challenges. Each of them has its own characteristics and usually

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 17

Fig. 1.9. Methodology for On-To-Knowledge

evaluates due to his nature only a subset of the generic methodology. The

path of an On-To-Knowledge application driven ontology development pro-

cess is sketched in Figure 1.9. This methodology for employing ontology-based

tools for knowledge management applications was developed by applying an

initial baseline methodology (cf. [1.20]) based on CommonKADS (cf. [1.21])

in the case studies and continuously improving it with the insight gained

from experience. First lessons learned from applying the methodology in the

skills management case study are presented in [1.22].

The main stream indicates activities that �nally lead to a re�ned, eval-

uated and applied ontology that has to be maintained, i.e. feasibility study,

ontology kicko�, re�nement, evaluation and maintenance and evolution. Each

ag indicates major outcomes of the related activity, i.e. the CommonKADS

worksheets TM-1, TM-2, AM-1, semi-formal description, target ontology and

ontology-based application. Below every activity the most important steps of

the activity are sketched. Re�nement, evaluation and maintenance may need

to be performed in iterative cycles.

The approach consists of �ve major phases. It starts with a feasibility

study (based on CommonKADS) to identify the parties involved, to focus

the domain for the ontology-based application and to support go/no-go deci-

sions for projects. During the kick-o� phase, the requirement speci�cation for

the ontology-based application is acquired. It contains, among other things,

valuable knowledge sources (e.g. domain experts identi�ed during the feasi-

bility study) and documents (e.g. index lists useful in building the ontology).

Through analysis of the knowledge sources, a baseline ontology is developed

that usually contains the most relevant concepts and relations of the focused

18 York Sure et al.

domain and is modeled on a conceptual level. During the next phase, the re-

�nement, knowledge is elicited with domain experts, which serves to enlarge

the ontology with more �ne-grained concepts and relations of the domain.

The approach ends with a formalization phase, where the re�ned ontology is

transferred into a formal representation language, such as OIL. This target

ontology serves as a base for developing a prototype application to evaluate

the target ontology in the next phase, the evaluation. The prototype helps to

check whether the initial requirements from the kick-o� phase are ful�lled. It

may be necessary to perform several re�nement-evaluation cycles before all

requirements are met, which leads to the deployment of the ontology within

the target application.

As the real world continues to change, so do the speci�cations for ontolo-

gies. To re
ect these changes, ontologies must be maintained frequently, as

are other software components. One point that we should stress here is that

the maintenance of ontologies is primarily an organizational process. Ontolo-

gies require strict rules for their update-delete-insert processes. We recom-

mend that ontology engineer group changes to the ontology and initiate the

switch-over to a new version of the ontology after thoroughly testing possible

e�ects to the application, viz. performing additional cyclic re�nement and

evaluation phases.

1.4.2 Information Search

Two of the case studies were carried out by Swiss Life. One of these ap-

proached the problem of �nding relevant passages in a very large document

about the International Accounting Standard (IAS) on the extranet (over

1000 pages). This document is used by accountants who need to know cer-

tain aspects of the IAS accounting rules. As the IAS standard uses very strict

terminology, it is only possible to �nd relevant text passages when the cor-

rect terms are used in the query. Very often, this leads to poor search results.

With the help of the ontology extraction tool OntoExtract, an ontology was

automatically learned from the document. The ontology consists of 1,500 con-

cepts linked by 47,000 weighted semantic associations. It supports users in

reformulating their initial queries when the results fall short of expectations.

This is done by o�ering terms from the ontology that are strongly associated

with (one of) the query terms used in the initial query. An evaluation of user

behaviour showed that 70% of the queries involved a reformulation step. On

average, 1.5 re�nements were made. Thus, although the ontology is struc-

turally quite simple, it greatly improves search results. Another advantage to

using a simple ontology is that it requires no manual e�ort to build.

1.4.3 Skills Management

Swiss Life's second case study is a skills management application (cf. [1.22])

that uses manually constructed ontologies about skills, job functions, and

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 19

education. These consist of 800 concepts with several attributes, arranged into

a hierarchy of specializations. There are also semantic associations between

these concepts. The skills management system makes it easy for employees

to create in a personal home page on the company's intranet that includes

information about personal skills, job functions, and education. The ontology

allows a comparison of skills descriptions among employees, and ensures the

use of uniform terminology in skills descriptions and queries for employees

with certain skills. Moreover, the ontology can automatically extend queries

with more general, more specialized, or semantically associated concepts. This

enables controlled extension of search results, where necessary.

Fig. 1.10. Skills management case study at Swiss Life

1.4.4 Exchanging knowledge in a virtual organization

The case study done by EnerSearch AB focuses on validating the industrial

value of the project's results with respect to the needs of a virtual organi-

zation. The goal of the case study is to improve knowledge transfer between

EnerSearch's in-house researchers and outside specialists via the existing web-

site. The study also aims to help the partners from shareholding companies

to obtain up-to-date information about research and development results.

20 York Sure et al.

The main problem with the current website is that its search engine

supports free text searches rather than content-based information retrieval,

which makes it fairly diÆcult to �nd information on certain topics. To remedy

this, the entire web site was annotated by concepts from an ontology devel-

oped using semi-automatic extraction from documents on the EnerSearch's

current website. The RDFferret search engine is used to extend free text

searches to searches of annotations. Alternatively, the Spectacle tool enables

users to obtain search results arranged into topic hierarchies, which can then

be browsed. This o�ers users a more explorative route to �nding the infor-

mation they need.

The case study evaluation will start with pre-trial interviews of the users,

followed by a test of the complete system. The third and �nal step will then

be the post trial interviews to evaluate the improvements made. Three groups

with di�erent interests and needs will be involved in the evaluation: (i) re-

searchers from di�erent �elds, (ii) specialists from the shareholders organiza-

tion and (iii) outsiders from di�erent �elds.

1.5 Conclusions

The Web and company intranets have boosted the potential for electronic

knowledge acquisition and sharing. Given the sheer size of these information

resources, there is a strategic need to move up in the data - information -

knowledge chain. On-To-Knowledge takes a necessary step in this process by

providing innovative tools for semantic information processing and thus for

much more selective, faster, and meaningful user access. This environment

deals with three aspects:

{ Acquiring ontologies and linking them to large amounts of data. For rea-

sons of scalability, this process must be automated based on information

extraction and natural language processing technology. To ensure quality,

the process also requires human input in terms of building and manipulat-

ing ontologies based on ontology editors.

{ Storing and maintaining ontologies and their instances. We developed an

RDF Schema repository that provides database technology and simple

forms of reasoning over web information sources.

{ Querying and browsing semantically enriched information sources. We de-

veloped semantically enriched search engines, browsing and knowledge

sharing support that makes use of machine processable semantics of data.

The technology developed has been proven to be useful in a number of case

studies. We can improve information access in the large intranets of sizeable

organizations. The technology has been used to facilitate electronic knowl-

edge sharing and re-use for customer relationship management and knowledge

management in virtual organizations.

1. On-To-Knowledge: Semantic Web Enabled Knowledge Management 21

We also encountered a number of shortcomings in our current approach.

Ontologies help to establish consensual terminologies that make sense to both

sites. Computers are able to process information based on their machine-

processable semantics. Humans are able to make sense of that information

based on their knowledge of real-world semantics. Building ontologies that are

a pre-requisite for { and result of { the common understanding of large user

groups is no trivial task. A model or \protocol" for driving the network that

maintains the process of evolving ontologies is the real challenge for making

the semantic web a reality. Most work on ontologies views them in terms of an

isolated theory containing a potentially large number of concepts, relation-

ships, and constraints that further detach formal semantics from them. To

tap into the full potential advantages they o�er the semantic web, ontologies

must be structured as interwoven networks that make it possible to deal with

heterogeneous needs in the communication processes that they are supposed

to mediate. Moreover, these ontologies need to shift over time because the

processes they mediate are based on consensual representation of meaning.

It is the network of ontologies and their dynamic nature that make future

research necessary. Actual challenges in the current work on ontologies are

what glue ontology networks together in space and time. Instead of a central,

top-down process, we require a distributed process of emerging and aligned

ontologies. Most existing technology focuses on building ontologies as graphs

based on concepts and relationships. Our current understanding is far below

par when it comes to proper methodological and tool support for building up

networks, where the nodes represent small and specialized ontologies. This is

especially true of the noisy and dynamically changing environment that the

web is and will continue to be.

References

1.1 T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web, Scienti�c
American, May 2001.

1.2 D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster (eds.). Semantic web
technology, MIT Press, Boston, to appear 2002.

1.3 D. Fensel. Ontologies: Silver bullet for knowledge management and electronic
commerce. Springer-Verlag, Berlin, 2001.

1.4 T. Gruber. Towards principles for the design of ontologies used for knowl-
edge sharing. International Journal of Human-Computer Studies, (43):907928,
1995.

1.5 Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer and D. Wenke. OntoEdit:
Collaborative ontology engineering for the semantic web. In: Proceedings of
the International Semantic Web Conference (ISWC) 2002, June 9-12 2002,
Sardinia, Italia, to appear 2002.

1.6 S. Handschuh. Ontoplugins - a
exible component framework. Technical re-
port, University of Karlsruhe, May 2001.

1.7 M. Klein and D. Fensel. OntoView { Web-based ontology versioning. Submit-
ted, draft at http://www.cs.vu.nl/~mcaklein/papers/ontoview.pdf, 2002.

22 York Sure et al.

1.8 D. L. McGuinness, R. Fikes, J. Rice and Steve Wilder. An environment for
merging and testing large ontologies. In Proceedings of the Seventh Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR2000), pages 483{493, San Francisco, USA. Morgan Kaufmann, 2000.

1.9 I. Horrocks. Using an expressive description logic: FaCT or �ction? In: Pro-
ceedings of the Sixth International Conference on Principles of Knowledge
Representation and Reasoning (KR'98), Trento, Italy, June 2-5, 1998, pages
636649. Morgan Kaufmann, 1998.

1.10 J. Broekstra, A. Kampman, F. van Harmelen. Sesame: An architecture for
storing and querying RDF data and schema information. In [1.2], to appear.

1.11 G. Karvounarakis, V. Christophides, D. Plexousakis and S. Alexaki. Querying
RDF Descriptions for Community Web Portals. In: Proceedings of The French
National Conference on Databases 2001 (BDA'01), pp. 133-144, Agadir,
Maroc, 29 October - 2 November, 2001.

1.12 R. Engels and B.A. Bremdal. CORPORUM: A workbench for the semantic
web. Semantic WebMining workshop. PKDD/ECML - 01. Freiburg, Germany,
2001.

1.13 O. Corcho and A. Gomez Perez. A roadmap to ontology speci�cation lan-
guages. In R. Dieng and O. Corby (eds.), Proceedings of the 12th Interna-
tional Conference on Knowledge Engineering and Knowledge Management
(EKAW'00), volume 1937 of LNAI, 80{96. Springer Verlag, 2000.

1.14 D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M.
Klein. OIL in a nutshell. In Knowledge Acquisition, Modeling, and Man-
agement, Proceedings of the European Knowledge Acquisition Conference
(EKAW-2000), R. Dieng et al. (eds.), Lecture Notes in Arti�cial Intelligence,
LNAI 1937, Springer-Verlag, October 2000.

1.15 D. Fensel, I. Horrocks, F. van Harmelen, D. McGuinness, and P. F. Patel-
Schneider. OIL: Ontology infrastructure to enable the semantic web, IEEE
Intelligent System, 16(2), 2001.

1.16 F. van Harmelen and I. Horrocks. Questions and answers about OIL. IEEE
Intelligent Systems, 15(6):69{72, 2000.

1.17 P. D. Karp, V. K. Chaudhri, and J. Thomere. XOL: An XML-based ontology
exchange language. Version 0.3, July 1999.

1.18 V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. Rice. OKBC: A
programmatic foundation for knowledge base interoperability. In Proceedings
of the 15th Nat. Conference on Arti�cial Intelligence (AAAI'98), 1998.

1.19 J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and I. Hor-
rocks. Enabling knowledge representation on the web by extending RDF
schema. In Proceedings of the Tenth International World Wide Web Con-
ference (WWW10), Hong Kong, May 2001.

1.20 S. Staab, H.-P. Schnurr, R. Studer and Y. Sure. Knowledge processes and
ontologies. IEEE Intelligent Systems, 16(1), January/February 2001.

1.21 G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt,
W. Van de Velde and B. Wielinga. Knowledge Engineering and Manage-
ment { The CommonKADS Methodology. The MIT Press, Cambridge, Mas-
sachusetts; London, England, 1999.

1.22 Th. Lau and Y. Sure. Introducing ontology-based skills management at a large
insurance company. In: Proceedings of the Modellierung 2002 \Modellierung
in der Praxis - Modellierung fr die Praxis", Tutzing, Germany, 25.-27. March,
2002.

