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Abstract

Social influence in social networks has been extensively researched. Most studies have focused
on direct influence, while another interesting question can be raised as whether indirect influence
exists between two users who’re not directly connected in the network and what affects such influ-
ence. In addition, the theory of complex contagion tells us that more spreaders will enhance the in-
direct influence between two users. Our observation of intensity of indirect influence, propagated
by n parallel spreaders and quantified by retweeting probability in two Twitter social networks,
shows that complex contagion is validated globally but is violated locally. In other words, the
retweeting probability increases non-monotonically with some local drops. A quantum cognition
based probabilistic model is proposed to account for these local drops.
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1. Introduction

Thanks to the fast development of Web2.0,
many online social networks have emerged,
where the observation of information dif-
fusion, or social influence, in large-scale
data becomes possible. Social influence has
been studied by many researchers, including
the validation of influence (Anagnostopoulos
et al., 2008; Crandall et al., 2008; Gomez Ro-
driguez et al., 2010), the propagation of in-
fluence among multiple types of social me-
dia (Gruhl et al., 2004; Cha et al., 2009; Hong
et al., 2011), the maximization of influence
spread in the whole network (Kempe et al.,
2003; Chen et al., 2009), and the probabilis-
tic modeling of direct influence (Xiang et al.,

2010; Tang et al., 2009; De Choudhury et al.,
2007). However, most relevant studies fo-
cused on direct influence, while another rele-
vant question regarding social influence may
be raised as to whether a user can exert indi-
rect influence on his/her friends’ friends and
what affects such influence. Normally, multi-
ple intermediate persons called spreaders are
involved in the indirect communication be-
tween two persons, i.e., the sender and the re-
ceiver. Those spreaders may have a combi-
national effect on the indirect influence prop-
agated from the sender to the receiver.

Some have studied the problem of serial in-
direct influence as shown in Figure 1(a), where
the node A exerts indirect influence on the
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node B through the n serial intermediate nodes,
C1 from Cn. For example, Fowler & Christakis
(2008) found that happiness spreads among
people as far as 3 hops. Liu et al. (2010) tried
to quantify the indirect influence of n-degree
friends at the topical level. However, very few
studies have focused on another type of indi-
rect influence, which we call parallel indirect
influence, as shown in Figure 1(b). C1, ...,Cn

nodes are located in parallel between node A
and node B to propagate influence from the
former to the latter.

A C1 Cn B

n nodes

direct influence

indirect influence

(a) Serial indirect influence

A B

C1

Cn

direct influence

indirect influence

n 
no

de
s

(b) Parallel indirect influence

Figure 1: Two types of indirect influence

A concept closely related to parallel indirect
influence is complex contagion. Unlike sim-
ple contagion, which can spread in social net-
works after just one contact with a single in-
fected neighbor like a disease, complex conta-
gion is a phenomenon where multiple sources
of exposure to a new idea are required be-
fore an individual adopts the idea (Centola &
Macy, 2005). That is to say, repeated expo-
sures of an individual to an idea recommended
by his/her multiple neighbors positively affect
the probability he/she will eventually follow
that idea. Romero et al. (2011) studied the

spread of hashtags in Twitter and quantified
the probability of a user adopting a new hash-
tag as the function of the number of his/her
neighbors who have already adopted it. They
found that the spread of political hashtags val-
idates the complex contagion, where the adop-
tion probability increases monotonically as the
number of neighbors who had already adopted
the same hashtags increases, until a plateau is
finally reached. By contrast, for idiom hash-
tags, complex contagion does not take effect,
and the adoption probability decays rapidly
when more neighbors have adopted the same
hashtags.

The problem we are studying is similar
to Romero et al. (2011), but we focus on mes-
sage spread behavior and indirect influence on
Twitter. A concrete example of this is shown in
Figure 2, where Alice sends out original mes-

Figure 2: Typical information spread in a social network

sages, Charlie and Carol further spread Alice’s
messages (i.e., by retweeting) and Bob finally
receives them. After that, Bob may choose to
further spread Alice’s messages to others, just
like his two neighbors Charlie and Carol have
done, or not. Here, the intent of Bob to fur-
ther spread Alice’s messages would reflect the
intensity of the indirect influence of Alice on
Bob, which can be measured as the probabil-
ity that Bob will further spread Alice’s mes-
sages, given that Charlie and Carol have al-
ready spread these messages. If complex con-
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tagion takes effect, the influence intensity will
be higher when both Charlie and Carol spread
Alice’s messages than when either or none of
the two spread them.

In this paper, we examine the intensity of
indirect influence as the function of the num-
ber of parallel spreaders between two users on
Twitter who don’t have direct following rela-
tions. We found that complex contagion is ob-
served globally but is violated locally. Espe-
cially, when the number of spreaders increases
from one to two, there’s an obvious drop in
the intensity. The newly emerging field of
quantum cognition is applied to interpret the
local drops in terms of interference effect on
the process of decision-making. Recently, an
article from NewScientist indicated how hu-
mans may actually think in a “quantum” man-
ner (Buchanan, 2011). Research from cogni-
tive science has also provided some initial ev-
idence of quantum-like cognitive interference
in human decision-making (Khennikov, 2010;
Busemeyer et al., 2009). These cognitive ex-
periments showed that the classical law of to-
tal probability was violated. Instead, quan-
tum probability (Gudder, 1988) was applied
to explain the experimental results. In addi-
tion, quantum cognition has been employed to
further advance the theory of information re-
trieval (IR) (Piwowarski et al., 2010; Zuccon
et al., 2009; Zhang et al., 2010).

Our main contributions are:

• Examined the change of parallel indirect
influence between the sender and the re-
ceiver, quantified by retweeting proba-
bility, with the number of spreaders and
found that such probability increases non-
monotonically with some local drops;

• Verified the existence of complex con-
tagion in the indirect influence on the
global scale;

• Proposed a probabilistic model based on
quantum cognition to explain local drops
in retweeting probability.

This paper is organized as follows: Section 2
defines the problem. Section 3 shows the ex-
perimental results. Section 4 proposes quan-
tum cognition model. Section 5 lists related
literature and Section 6 concludes the study.

2. Problem Definition

Twitter users send and read messages called
tweets, which contain no more than 140 char-
acters. One user can read another user’s mes-
sages by following them. In addition, one
user’s message can be re-sent by his followers
via retweeting. A retweeting message starts
with the identifier “RT @username”. Such fol-
lowing/follower relationships connect Twitter
users and form the social network where in-
formation flows through retweeting. Given a
collection of tweets C = {t}, V represens all
Twitter users while E = {(u, v) |u, v ∈ V} rep-
resents all following relations where u follows
v. We provide several formal definitions as fol-
lows:

• DEFINITION 1. [Following Triple] ∀t
starting with “RT @y: RT @x” posted
by z, we build a following triple Txyz =

(x, y, z), x, y, z ∈ V and claim that (z, y) ∈
E and (y, x) ∈ E. We also define C(Txyz)
as the total count of tweets that belongs to
Txyz and C(v), v ∈ V as the total count of
tweets v posted.

• DEFINITION 2. [Spreaders] ∀a, b ∈ V ,
we define spreaders between a and b as
S ab = {y|Tayb , NULL, y ∈ V}.

• DEFINITION 3. [N-spreader Retweeting
Pattern] ∀a, b ∈ V we define a retweeting
pattern Pab = {Tayb|y ∈ S ab} and |S ab| =
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n. Consequently, we define a n-spreader
retweeting pattern as Pn = {Pab||S ab| = n},
and Pab is an instance of Pn.

• DEFINITION 4. [Retweeting Probabil-
ity] ∀Pab , ∅, we define the probability
of b retweeting from a as Pr(b|a; S ab) =∑

y∈S ab
C(Tayb)/C(a). Consequently, we

define the retweeting probability of n-
spreader retweeting pattern as Pr(n) =∑

Pab∈Pn
Pr{b|a; S ab}/|Pn|.

• DEFINITION 5. [Indirect Influence]
∀x, z ∈ V ∩ Pxz , ∅, we think x exerts in-
direct influence on z. Pr(n) indicates the
average intensity of indirect influence in
n-spreader retweeting pattern.

Starting from 1-spreader retweeting pattern
to illustrate how information spreads in Twit-
ter (Figure 3(a)), where B follows C and C
follows A. We assume that B does not di-
rectly follow A so it can only read A′s mes-
sages through C. A posts a tweet T and C reads
and retweets it by adding the sign RT @A.
Such information flow is represented by solid
arrays because it is actually observed. Then B
reads T and decides whether to further retweet
it by adding a sign RT @C. The informa-
tion flow from B is represented by a dashed
array because it is not an actual but a poten-
tial flow. We can measure the intent of B to
further propagate A′s messages transferred by
C using the retweeting probability Pr(B|A; C).
For instance, A posts a total of 100 tweets and
20 of them are retweeted by C. Then B fur-
ther retweets 5 of the 20 tweets, which makes
Pr(B|A; C)= 5/100 = 0.05.

In Figure 3(b), two spreaders C1 and C2 are
involved in transferring messages from A to B.
Assume that A posts 100 tweets, C1 retweets
15 of them and C2 retweets 30 of them. Then
B retweets 5 of C′1s 15 tweets and 10 of C′2s 30
tweets. As a result, Pr(B|A; C1,C2)= (5 + 10)

A C B
T RT @A: T RT @C: RT @A: T

(a) 1-spreader

A

C1

C2

B

T1
RT @A: T1

RT @A: T2

RT @C1: RT @A: Ti

RT @C2: RT @A: Tj

T2

(b) 2-spreader

A

C1

C2 B

RT @A: T1

RT @A: T2
RT @C1: RT @A: Ti

RT @C2: RT @A: Tj

Cn

RT @
A: T

3

RT @Cn: RT @A: Tn

T1

Tn

T2

(c) n-spreader

Figure 3: Retweeting patterns with different number of
spreaders

/100 = 0.15. The general n-spreader retweet-
ing pattern is shown in Figure 3(c), and our
research question can be formulated as: Given
n spreaders, how does the curve Pr(n) change
with n?

According to complex contagion, Pr(n),
which represents the intensity of indirect in-
fluence, increases monotonically with n, since
more spreaders involved in transferring the
sender’s messages leads to higher probabil-
ity of the receiver to further propagate the
sender’s messages. We examined the proba-
bility in the real Twitter data to see whether
this is true.

3. Results

In this section, we show the results of
retweeting probability in two different Twit-
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ter datasets and testify the existence of com-
plex contagion. One dataset consists of tweets
from the public timeline that can be seen as a
whole social network, while the other consists
of tweets from a certain user’s ego network.

3.1. Dataset1
The first dataset1 contains 467 million

tweets from 20 million Twitter users from
June to December 2009 , which covers 20%-
30% of total public tweets during this period.
Figure 4 shows the distribution of n-spreader
retweeting pattern. As the number of spread-
ers increases, the corresponding number of
instances drops, indicating that the situation
where too many spreaders are involved is in-
frequent. The maximum number of spreaders
we found is 29.
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Figure 4: Distribution of the number of instances in all
n-spreader retweeting patterns in dataset1

We plotted the curve Pr(n) for n = 1 to 10
in Figure 5. The reason that we didn’t show
the part of the curve for n > 10 is that the rel-
atively rare occurrence of patterns with a large
number of spreaders makes the result subject
to random disturbance and yields unreliable
observations. From Figure 5 we can see that

1http://snap.stanford.edu/data/twitter7.html

drop

Figure 5: The curve of Pr(n) in dataset1
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Figure 6: Distribution of the number of instances in all
n-spreader retweeting patterns in dataset2

drop

Figure 7: The curve of Pr(n) in dataset2
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the global trend of Pr(n) is increasing as n in-
creases. That is to say, overall, the intensity of
indirect influence tends to become higher, or at
least persists, as more spreaders are included,
which validates the phenomenon of complex
contagion in the global level. However, there
are two drops spotted in Pr(n), i.e. from n
=1 to 2 and 8 to 9. To testify the statisti-
cal significance of the two decreased probabil-
ity values we observed, we used t-test (Gos-
set, 1970) of difference between two means2

since retweeting probability is a type of mean
value according to DEFINITION 4. Specifi-
cally, we tested two hypothesis: Pr(1) > Pr(2)
and Pr(8) > Pr(9). Two indices, t-score and p-
value were calculated, with higher t-score and
lower p-value indicating more statistically sig-
nificant difference. Generally, we consider the
difference (decrease) as statistically significant
if p-value is less than 0.05; otherwise, the dif-
ference (decrease) is very likely to be caused
by random noise. The results are shown in
Table 1: We can see both p-values and t-

decrease from 1 to 2 from 8 to 9
t-score 88.44 8.38

p-value 0.00 0.00

Table 1: T-test results of decrease of retweeting proba-
bility in dataset1

scores show that the two drops of retweeting
probability are statistically significant, espe-
cially when one spreader becomes two spread-
ers. This implies that the decrease is indeed
caused by some other reason rather than ran-
dom noise. In other words, the indirect in-
fluence decays occasionally as the number of
spreaders increases, wherein the complex con-
tagion is violated locally.

2http://www.rossmanchance.com/applets/
TOSCalculations/TOSCalculations.html

3.2. Dataset2
The second dataset comes from Knowledge

Engineering Lab at Tsinghua University and
covers the time span from August to Decem-
ber in 2009. The process of tweets crawl-
ing started from @yanglicai, a popular Twitter
user in the Chinese community, then extended
to all contacts of @yanglicai identified from
his replying and retweeting messages. Subse-
quently, tweets from the contacts of his con-
tacts are crawled as well. Finally, 192,999
tweets from 8254 users were obtained, and
25.5% of all crawled tweets were retweeting
messages. If dataset1 represents the whole net-
work, we view dataset2 as an ego network with
@yanglicai located at the center with all other
users having direct/indirect interactions with
@yanglicai.

decrease from 1 to 2 from 4 to 5 from 7 to 8
t-score 5.15 1.51 5.11

p-value 0.00 0.06 0.00

Table 2: T-test results of decrease of retweeting proba-
bility in dataset2

We did the same investigation for the sec-
ond dataset as the first dataset. Figure 6 shows
the distribution of n-spreader retweeting pat-
terns in this ego-network. Again, the number
of instances decreases as n increases. We plot-
ted the curve of Pr(n) in Figure 7. Similar to
dataset1, several drops are spotted, i.e. from
n =1 to 2, 4 to 5 and 8 to 9. We also did the
same t-test with results shown in Table 2. The
p-value of the test for the decreased probabil-
ity occurring when n changes from 4 to 5 is a
little larger than 0.05, implying that such de-
crease is only marginally trustable and is pos-
sibly caused by random noise. However, the
other two drops still show high statistical sig-
nificance because both p-values are close to 0.
In summary, the phenomenon that retweeting
probability increases non-monotonically with
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some local drops is observed in both the whole
network (dataset1) and certain ego-network
(dataset2), verifying that complex contagion is
globally validated but locally violated.

4. Quantum Cognition

Although the effect of complex contagion
on the indirect influence is observed on a
global scale, the local scale decreasing in in-
fluence needs further interpretation. Actually,
a reason for this may be related to human psy-
chology and cognition, a topic too complex to
explain. The emerging field of quantum cog-
nition, however, might be able to provide a
potential interpretation for the decreased in-
fluence phenomenon. This field applies the
formalism of quantum theory to model cog-
nitive phenomena such as memory, judgment
and decision making. Notably, in the pro-
cess of decision making where a decision de-
pends on multiple factors, quantum cognition
assumes that these factors are not indepen-
dent but have quantum-like interference effects
on the final decision in a manner similar to
the explanation for results from double-slit ex-
periments (Khennikov, 2010; Pothos & Buse-
meyer, 2009; Yukalov & Sornette, 2011).

4.1. A Physical Metaphor

From the perspective of quantum cogni-
tion, the information spread is compared here
to the physical wave quantum phenomenon.
In the wave theory, the phase and magni-
tude of a wave at a certain point is the linear
superposition of all waves from all sources.
This superposition can result in constructive
(when the wave phases align) or destructive
(when the waves are out of phase) interfer-
ence. Such quantum interference was first ob-
served in the well-known double-slit exper-
iment Young (1804), where quantum waves
that pass through two slits interfered with each

other and generated a pattern of bright and
dark bands on the screen. (Figure 8(a))

Detector

Screen

Light Source S1

S2

(a) Double-slit experiment in quantum physics

Alice

Charlie

Carol

Bob

(b) Double-slit phenomenon in information spread

Figure 8: Double-slit phenomenon in both physics and
information

We use our example in Figure 2 to illustrate
the physical metaphor for information spread
in Figure 8(b). Alice’s sending out an initial
message to Charlie and Carol creates an infor-
mation ‘wave’ in the form of a primary wave-
front. Then Charlie and Carol forward Alice’s
messages by creating two secondary wave-
fronts. Finally, the two waves arriving at Bob
may have constructive/destructive interference
effects on his intent to further propagate the in-
formation flow. If constructive interference oc-
curs, the intensity of Bob’s intent to propagate
Alice’s messages will increase, which is very
similar to the effect of complex contagion. If
destructive interference occurs, the intensity of
Bob’s intent will decrease, which goes against
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complex contagion.
We give an intuitive illustration to show

how Bob’s intent decreases due to a destruc-
tive interference effect. Assume that initially
only Charlie spreads Alice’s messages while
Carol does not. Bob receives Alice’s mes-
sages through Charlie and becomes interested
in these messages and further spreads them,
because Bob has obtained relevant and fresh
information. Later on, Carol also begins to
spread Alice’s messages but they largely over-
lap with those already spread by Charlie. Bob
therefore becomes less interested in Alice’s
messages because he’s overwhelmed with re-
dundant information. Thus Bob’s intent to fur-
ther spread Alice’s messages decreases, and so
does the indirect influence of Alice on Bob.
Here, the interference between two spreaders
leads to destructive effects on the indirect in-
fluence from the sender to the receiver, which
may explain the local decrease spotted in Fig-
ure 5. If a third spreader joins in and provides
the receiver with new and relevant information
about the sender, the indirect influence may
rise again.

4.2. Cognition Model
Although an intuitive interpretation of lo-

cally decreased influence is given in terms of
quantum cognition, formal mathematical mod-
eling is needed. We propose a cognitive model
called a q-attention model. This model origi-
nates from Batchelder & Riefer (1990), whose
work presents a family of processing models
for the source-monitoring paradigm in human
cognition but is especially tailored to our so-
cial influence research in Twitter. Note that
most concepts and notations used in our quan-
tum modeling come from the theory of quan-
tum probability (Gudder, 1988).

The q-attention model is designed for the
situation where a group of Twitter users S n ={
C j

}
, j = 1, 2, ..., n, follow user A and are also

followed by user B. S n receive tweets from A
and also retweet them to B. In addition, we
assume that there exists an upper limit on the
total number of users B can pay attention to
among all B′s followees, due to human’s cog-
nitive processing capacity. We set the number
as N ≤ n . In order to formulate the proba-
bility Pr(B|A; S n) as a function of n, we pro-
pose two versions of q-attention model: one is
based on classical probability theory, and the
other is based on quantum probability theory.

A

CN+1

CN

Cn

B

C1

C2

q1

q2

qN

Pr(B | A;S
n
)

(a) Classical q-attention model

A

CN+1

CN

Cn

B

C1

C2
B | A;S

n

!
1

!
2

!
N

(b) Quantum q-attention model

Figure 9: Q-attention model
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4.2.1. Classical q-attention model
We model the cognitive process of B

retweeting from A′s messages through C j ∈ S n

by dividing it into two phases: First, B pays
attention to C′js messages; Second, B reads
those messages retweeted by C j from A and
decides whether to further retweet them (Fig-
ure 9(a)). In the first phase, we define q j as the
probability that B pays attention to C j and re-
quire

∑N
q=1 q j = 1 . In the second phase, we

have already defined Pr(B|A; C j) to measure
B′s retweeting intent through C j. Finally, the
probability that B retweets from A through C j

can be computed by the classical law of total
probability:

Pr(B|A; S n) =
∑

C j∈S n

q j · Pr(B|A; C j) (1)

We replace Pr(B|A; S n) with Pr(n) to repre-
sent the general case and two implications can
be drawn:

• The total effect of all spreaders on the
receiver is just the linear superposition
of an individual effect of each spreader,
which is represented by an independent
single term without interfering with other
spreaders’ effects;

• Pr(n) increases monotonically as n in-
creases, indicating that adding spreaders
only increases the final intent of B to fur-
ther retweet A′s messages.

Actually, the classical q-attention model
matches the sense of complex contagion. In-
spired by the description of influence curve of
political hashtag in Romero et al. (2011), we
can represent Pr(n) as a monotone increasing
function. In the simplest case, we can assume
that Pr(n) is just a linear increasing function
of n from 1 until N . When n ≥ N, Pr(n) ≡
Pr(N), because the upper limit of human’s

information processing probability is reached
and the intensity of influence persists at a rel-
atively stable level. To summarize, Pr(n) can
be approximately represented by the following
piecewise defined function:{

Pr(n) = Pr(1) +
Pr(N)−Pr(1)

N−1 (n − 1), n = 2, ...,N − 1
Pr(N + k) = P(N), k ∈ N+

(2)

4.2.2. Quantum q-attention model
To take into account the cognitive interfer-

ence effect that is ignored in the classical q-
attention model, we now formulate a quantum
version of the q-attention model. According to
quantum probability theory Gudder (1988), a
probability p of an event is not primitive but
derived from something more primitive called
a probability amplitude ϕ (a complex num-
ber) — the probability is the square of mag-
nitude of the amplitude, i.e. p = |ϕ|2 . As
is shown in Figure 9(b), the structure of quan-
tum q-attention model is almost the same as
the classical version, except for the following
three differences:

• The classical probability of paying atten-
tion to C j, previously denoted by q j , is
replaced by a probability amplitude de-
noted by ϕ j . B is assumed to be in a
superposition state, denoted by:

|S n〉 =

N∑
j=1

ϕ j ·
∣∣∣C j

〉
(3)

where ϕ j represents the “potential” of B
to consider the tweets from C j, but the po-
tential is represented by a complex num-
ber. The probability of paying attention
to the tweets from C j is obtained from the
squared magnitude q j = |ϕ j|

2 and again
we require

∑N
j=1 |ϕ j|

2 = 1. Overall, Equa-
tion 3 represents B′s cognitive state of se-
lecting spreaders C j to pay attention to in
a quantum manner;
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• The classical probability that B retweets
from A through C j, previously denoted
by Pr(B|A; C j), is replaced by the prob-
ability amplitude

〈
B|A; C j

〉
, which repre-

sents the B’s “potential” to retweet but
such potential is represented by a com-
plex number. The probability of retweet-
ing is obtained from the squared magni-
tude Pr(B; A,C j) = |

〈
B; A,C j

〉
|2;

• The quantum probability obeys the law
of total amplitude rather than the law
of total probability. The probability
that B retweets from A passed along by
C j ∈ S n is represented by Pr(B; A, S n) =

| 〈B; A, S n〉 |
2. To determine the amplitude

〈B; A, S n〉, we replace the sum of proba-
bilities shown in Equation 1 with the sum
of amplitudes given below:

〈B|A; S n〉 =
∑

C j∈S n

ϕ j ·
〈
B|A; C j

〉
(4)

To make it clear, we show some examples
of how quantum q-attention model naturally
encompass interference effects. First, we con-
sider n = 1 in which case only one spreader
C1 exists. Then 〈B|A; S 1〉 = |ϕ1 · 〈B|A; C1〉 |

2 =

|ϕ1|
2 · | 〈B|A; C1〉 |

2 = q1 · Pr(B|A; C1). Appar-
ently, the quantum version is exactly the same
as the classical version because no interference
occurs.

Next we consider n = 2 in which case S 2 ={
S 1, S 2

}
. From Equation 4 we have:

〈B|A; S 2〉 = |ϕ1 · 〈B|A; C1〉 + ϕ2 · 〈B|A; C2〉|
2

= |ϕ1 · 〈B|A; C1〉|
2 + |ϕ2 · 〈B|A; C2〉|

2

+
(
ϕ∗1 · ϕ2

)
· 〈B|A; C1〉

∗ · 〈B|A; C2〉

+
(
ϕ1 · ϕ

∗
2
)
· 〈B|A; C1〉 · 〈B|A; C2〉

∗.

The first two terms corresponds to the same
probability that we obtain from the classical

model, while the last terms form a conjugate
pair: (

ϕ∗1 · ϕ2
)
· 〈B|A; C1〉

∗ · 〈B|A; C2〉 =

|ϕ1 · ϕ2 · 〈B|A; C1〉 · 〈B|A; C2〉| ·

(cos (θ12) + i · sin (θ12))(
ϕ1 · ϕ

∗
2
)
· 〈B|A; C1〉 · 〈B|A; C2〉

∗ =

|ϕ1 · ϕ2 · 〈B|A; C1〉 · 〈B|A; C2〉| ·

(cos (θ12) − i · sin (θ12))

where θ12 is the phase difference of the
two complex number ϕ1 · 〈B|A; C1〉 and ϕ2 ·

〈B|A; C2〉, which is dependent on the relation
between C1 and C2. The sum of the conjugate
pair produces a real number that we call an in-
terference term:

I12 = 2 · |ϕ1 · ϕ2 · 〈B|A; C1〉 · 〈B|A; C2〉 | · cos(θ12)

Note that the cosine term can be positive
(producing constructive interference), nega-
tive (producing destructive interference) or
zero (no interference). Notably, if the cosine
value is sufficiently negative, then the prob-
ability of B retweeting from A through two
spreaders C1 and C2 can be smaller than the
probability given only one spreader C1, i.e.
|ϕ2 · 〈B|A; C2〉 |

2 + I12 < 0.
Finally we consider the case n = 3 and S 3 ={

S 1, S 2, S 3

}
. Similarly, we obtain:

〈B|A; S 3〉 = |ϕ1 · 〈B|A; C1〉|
2 + |ϕ2 · 〈B|A; C2〉|

2

+ |ϕ3 · 〈B|A; C3〉|
2 + I12 + I13 + I23,

with the interference term defined as:

Ii j = 2 · |ϕi · ϕ j · 〈B|A; Ci〉 ·
〈
B|A; C j

〉
| · cos(θi j)

(5)
Again, each interference term can be positive
or negative. If they are all large negative num-
bers, then we may then find a decrease in the
probability for three spreaders compared with
one or two spreaders. There is also a possi-
bility that all the interference terms will cancel
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out each other in which case the combinational
interference would be equal to none. In other
words, the quantum version in this case is re-
duced to the classical version.

4.2.3. Comparison between two q-attention
models

We now systematically compare the clas-
sical and quantum q-attention models and
mathematically interpret the locally decreased
influence based on the quantum q-attention
model. The architecture of the two models is
actually the same yet the main conceptual dif-
ference between the two lies in the represen-
tation of probability. Based on above equa-
tions, we can obtain the mathematical relation
between the two models as:

Prq(n) = Prc(n) +

n−1∑
i=1

n∑
j=i+1

Ii j (6)

where Prq(n) represents the average result of
the quantum model while Prc(n) represents the
average result of the classical model. The
only difference between the two models is the
sum of interference terms, which represents
the interference effect. If we consider the delta
value, we obtain:

4Prc(n) = Prc(n)−Prc(n−1) = qn ·Pr(B|A; Cn)
(7)

4Prq(n) = Prq(n) − Prq(n − 1)

= qn · Pr(B|A; Cn) +

n−1∑
j=1

I jn
(8)

From Equation 7, we can easily ob-
tain 4Prc(n) > 0, i.e., Prc(n) increases
monotonously with n. In other words, B′s
intent to retweet A′s messages always be-
comes stronger as more spreader C j are
involved in relaying A′s messages. However,
the situation becomes more complex in
Equation 8, due to the interference items. It

becomes very difficult to predict the changing
tendency of B′s retweeting intent. Especially,
if

∑n−1
j=1 Ii j > −|qn · Pr(B|A; Cn)|, we have

4Prq(n) < 0. In other words, sometimes the
destructive effect will become so strong that it
decreases B′s intent.

Compared with the classical q-attention
model, the quantum q-attention model fully
captures the trend of indirect influence shown
in Figures 5 and 7. When constructive cog-
nition interference occurs or interference can-
cel out (i.e., the classical model), the influ-
ence increases and complex contagion takes
effect; when destructive cognition interference
occurs, the influence may decrease and com-
plex contagion is violated. In addition, the
constructive/null effect occurs more frequently
than the destructive effect, corresponding to
the global increase of indirect influence with
occasional local drops. Although our proposed
quantum cognition model shows promise, it is
a purely theoretical hypothesis based on cur-
rent research in the field and needs further em-
pirical verification.

5. Discussion

Equation 6 shows that the core part of
quantum q-attention model is the interference
terms, which can be modeled as a linear com-
bination of different cos(θi j) terms. Then the
remain problem is how to evaluate the capabil-
ity of quantum model (i.e. those θi j) in char-
acterizing the dynamic of indirect influence
regarding retweeting behavior in Twitter. It
is difficult to solve because those interference
terms are affected by complex human psy-
chological or other factors, which needs fur-
ther investigation and experimentation. More-
over, the quantum cognition model is more
like a conceptual and theoretical prototypi-
cal model, rather than traditional probabilistic
models, like Markov random filed or Bayesian
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network, which already have mature frame-
works for parameters learning and prediction
evaluation. Therefore, the complete evalua-
tion of the quantum model is beyond our work
at the moment and we will leave it for future
work.

In spite of the difficulty of model evalua-
tion illustrated above, we still attempt to jus-
tify the mathematical capability of the quan-
tum q-attention model in interpreting the co-
existence of global increase and local drops
found in the empirical data, by answering two
questions: First, if we have already observed
change of the retweeting probability with the
number of spreaders in one empirical dataset,
can we find the valid mathematical solutions of
cos(θi j)? Second, can we apply some simple
rule to generate simulated/fake cos(θi j) terms,
which can lead to global increased but locally
dropped retweeting probabilities against dif-
ferent different number of spreaders?

To answer the first question, we rely on the
simple classic linear model described in Equa-
tion 2 and 1. In addition, we assume that
the empirical values of retweeting probabil-
ities represent the output of quantum model
and the difference between the quantum and
classical model are fully captured by interfer-
ence terms, as is shown in Equation 6. Then
by solving the linear equations composed of
Equation 1,2,6, we can obtain θi j for different
values of n. There’re two points that worth at-
tention. First, if |cos(θi j)| > 1, then it is an
invalid solution and the quantum q-attention
model fails. Second, most of the time, the so-
lutions are not unique and multiple combina-
tive solutions of cos(θi j) can be found.

We take dataset1 as the example to illus-
trate how to find those cos(θi j). We set N as
half of the total number of retweeting patterns
found in dataset1, i.e. N=14. When n = 2,
we solve the linear equations above and obtain
cos(θ12) = −0.524, which is a valid value since

−1 ≤ cos(θ12) ≤ 1. It also indicates that the
interference between C1 and C2 is destructive,
which leads to a local drop. When n = 3, we
solve the linear equations and use the already
known value of cos(θ12). We obtain

44.4 · cos(θ13) + 7.8 · cos(θ12) = 7.9· (9)

Obviously, cos(θ13) and cos(θ12) have more
than one solutions and they may have oppo-
site signs. In other words, when C3 is added,
the interference between C1 and C3 and the in-
terference between C2 and C3 may behave in
different directions, leading to the rise of the
global indirect influence again. To be general,
those cosine terms satisfy the following equa-
tion when n = k > 2:
k−1∑

i

Di f f (i)+2(αcos(θ1k)+
k∑

j=2

βcos(θ jk)) = Di f f (k)

(10)
where Di f f (i) = Prq(i) − Prc(i), α =√

Pr(1) · β and β =
Pr(N)−Pr(1)

N−1 . We also try to
find values of cos(θi j) for other n values and
the solutions are all valid, which indicates the
mathematical plausibility of proposed quan-
tum model. However, It is worth note that the
cos(θi j) items calculated from one dataset do
not apply to other dataset, because different
sets of users have different interactions.

To answer the second question, we run a
simple simulation to generate those cos(θi j)
without any prior knowledge by assuming that
cos(θi j) is just uniformly distributed from [-
0.5, 0.5] and can be randomly sampled. Here
we examine three types of retweeting prob-
abilities: classical model value from Equa-
tion 2, emprical value from the dataset1, and
simulated quantum model value from Equa-
tion 10, 6 and randomly sampled cos(θi j). We
plot two groups of values by using different
random number generator seeds. The sim-
ulated curves in both Figure 10(a) and Fig-
ure 10(b) show the trend of global increase
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plus local drop, which matches our motiva-
tion of building quantum q-attention model.
However, the change of retweeting probabil-
ity in Figure 10(b) shows large deviation from
the empirical curve, implying that cos(θi j) is
not randomly distributed but follows some rule
that needs further examination in order to fit
the real data.
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(a) simulation with random seed 1
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Figure 10: Simulation results of quantum model using
randomly sampled interference items

Although we demonstrate the mathematical
plausibility of quantum model above, our work
just initiates a new direction of applying quan-
tum cognition to social influence study, which

is not seen in any other current related re-
searches yet. We will leave the study of com-
plete parameter estimation and model evalua-
tion of quantum q-attention models for future
work, possibly by combining existing machine
learning techniques and psychological experi-
ments.

6. Related Work

6.1. Information and Influence Propagation
The origin of information propagation in

social networks comes from social influence,
which occurs when an individual’s thoughts,
feelings or actions are affected by other peo-
ple. Information propagation characterizes the
way that a node in social networks can spread
an information meme to its neighbor nodes
via exerting social influence on them. The
existence of social influence has been vali-
dated by many researchers (Anagnostopoulos
et al., 2008; Crandall et al., 2008; Gomez Ro-
driguez et al., 2010). Different types of in-
fluence across various fields has been stud-
ied, including social media like Blog (Gruhl
et al., 2004), Flickr (Cha et al., 2009) and Twit-
ter (Hong et al., 2011; Yang et al., 2010), as
well as academia (Ding, 2011; Ding & Cronin,
2011; Yan et al., 2011). The maximization of
influence spread in the whole network was in-
vestigated (Kempe et al., 2003; Chen et al.,
2009) as well. In addition, different meth-
ods of probabilistic modeling of social influ-
ence were also proposed. Tang et al. (2009)
used Topical Affinity Propagation to model
the topic-level social influence on large so-
cial network; De Choudhury et al. (2007)
found three contextual factors that affect the
influence propagation between two friends in
MySpace; Xiang et al. (2010) developed an
unsupervised model to estimate relationship
strength from interaction activity and user sim-
ilarity. Although many interesting phenomena
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have been observed from the above researches,
most of the time only direct communication
between two adjacent persons in a social net-
work is considered in modeling and analyz-
ing the information propagation. Normally,
multiple intermediate persons called spreaders
are involved in the indirect communication be-
tween two persons, i.e., the sender and the re-
ceiver. Those spreaders may not be indepen-
dent but have combinational interference on
the information flow from the sender to the re-
ceiver. Some have studied the problem of se-
rial indirect influence where indirect influence
is propagated through n serial nodes. Fowler &
Christakis (2008) found that happiness spreads
among people as far as 3 hops. Liu et al. (2010)
tried to quantify the indirect influence of n-
degree friends at the topical level. However,
very few studies have focused on the parallel
indirect influence, where indirect influence is
propagated through n parallel nodes, the focus
of our paper.

6.2. Quantum cognition
A recent article from NewScientist pointed

out the strong connection between quantum
theory and human thought processes, where
human cognition is found to follow fuzzy logic
more than classical logic (Buchanan, 2011).
Cognitive science researches have also iden-
tified the existence of quantum-like cognitive
interference in human decision-making (Buse-
meyer et al., 2009; Khennikov, 2010), where
the experiments showed that the classic law
of total probability was violated. Instead,
quantum probability (Gudder, 1988) was in-
troduced to explain the experimental results.
Quantum cognition has been introduced in
the IR field with the hope to build more
user-centric methods in searching and rank-
ing. Arafat & Rijsbergen (2007) applied QT to
address some fundamental issues in searches,
which investigated and modeled user cogni-

tion and their interactions during the search
process. Hou & Song (2009) proposed an ex-
tended vector space model (EVSM) to model
context-sensitive high-order information. Zuc-
con et al. (2009) suggestted ranking the docu-
ment relevance using QT as judgment of rele-
vance that is not independent from other doc-
uments, and the interference of other docu-
ments play an important role in judging the rel-
evance. They proposed a novel quantum prob-
ability ranking principle (QPRP) to model a
situation, where a document relevance assess-
ment is influenced by other documents. Zhang
et al. (2010) proposed the use of quantum fi-
nite automation (QFA) to represent the transi-
tion of the measurement states (the relevance
degrees of the document judged by users) and
dynamically model the cognitive interference
of users when they are influenced by other re-
lated documents. Although quantum cognition
has been extensively applied in IR, our paper
takes the first lead in applying quantum cogni-
tion to analyze the indirect social influence in
social networks.

6.3. Complex Contagion
Complex contagion (Centola & Macy,

2005) refers to the phenomenon where mul-
tiple sources of exposure to a new idea are
required before an individual adopts the idea.
Simple contagion, however, can spread in so-
cial networks with just one contact with a sin-
gle infected neighbor, as a disease may func-
tion. Centola (2010) found that individuals are
more likely to acquire new health practices
while living in networks with dense clusters
of connections, that is, when in close contact
with people they already know well. For in-
stance, people are more likely to participate
regularly in the health forum if they had more
health buddies who registered for it. Romero
et al. (2011) studied the spread of hashtags
in Twitter and quantified the probability of a
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user adopting a new hashtag as the function of
the number of his/her neighbors who have al-
ready adopted it. They found that the spread
of political hashtags validates the complex
contagion, where the adoption probability in-
creases monotonically as the number of neigh-
bors who have already adopted the same hash-
tags increases, until finally reaching a plateau.
By contrast, for idiom hashtags, complex con-
tagion does not take effect and the adoption
probability decays rapidly when more neigh-
bors have adopted the same hashtags.

7. Conclusions

In this paper, we investigated the propaga-
tion of parallel indirect influence on Twitter
with a focus on how the intensity of influence
changes with the number of spreaders. We
constructed two social networks formed by the
following relations (confirmed by RT in mes-
sages) in Twitter, quantified the intensity of in-
direct influence with the retweeting probabil-
ity, and plotted the curve of retweeting prob-
ability with the number of spreads. We found
that the phenomenon of complex contagion is
validated globally since the overall trend of
the retweeting probability is gradual increas-
ing against the number of spreaders. How-
ever, the probability decreases locally as well.
We applied quantum cognition theory in an at-
tempt to interpret the local anomaly.

Although some interesting findings about
indirect influence on Twitter are observed in
this study, a great deal of future work remains
to be done on the topic. First, the phenomenon
of locally decreased influence needs further
study. Quantum cognition itself may not be
sufficient to explain it. Some theories from
psychology, sociology, and probability will
help address these complexities. Second, we
plan to compare the indirect influence curves
for different topics. We think that different pat-

terns in retweeting behaviors exist for differ-
ent topics on Twitter. It will be very meaning-
ful to compare them and see whether complex
contagion works or not in different contexts.
Third, we hope to testify our quantum cogni-
tion model on other social networks including
Facebook. For instance, “like” is a common
action in Facebook. We can model the proba-
bility of a use who “like” some item on Face-
book as the number of his/her social neighbors
who already “liked” the same item, and see
whether complex contagion with local drops
reemerges. Finally, our current work is more
descriptive and observational than mathemat-
ical formulations. We hope to build a proba-
bilistic model to represent and predict indirect
influence in the future.
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